【題目】如圖,一次函數y=kx+b(k≠0)與反比例函數y= (m≠0)的圖象有公共點A(1,2),D(﹣2,﹣1).直線l⊥x軸,與x軸交于點N(3,0),與一次函數和反比例函數的圖象分別交于點B,C.
(1)求一次函數與反比例函數的解析式;
(2)求△ABC的面積;
(3)根據圖象回答,在什么范圍時,一次函數的值大于反比例函數的值.
【答案】
(1)解:把(1,2)代入y= 得m=2,
則反比例函數的解析式是y= ;
根據題意得 ,
解得 ,
則一次函數的解析式是y=x+1
(2)解:在y= 中,令x=3得y= ,則C的坐標是(3, ),
在y=x+1中令x=3,則y=4,B的坐標是(3,4).
則BC=4﹣ = .
則S△ABC= × ×(3﹣1)=
(3)解:一次函數的值大于反比例函數時x的范圍是:﹣2<x<0或x>1
【解析】(1)利用待定系數法即可求得函數的解析式;(2)首先求得B和C的坐標,則BC的長即可求得,然后利用三角形的面積公式求解;(3)求一次函數的值大于反比例函數時x的范圍就是求一次函數的圖象在反比例函數的圖象的上邊部分對應的自變量x的范圍.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,如圖1,第二象限內一點B(a,b),過B線段BA垂直于x軸,垂足為點A,實數a、b滿足,D(4,0),將線段AB向右平移使點A和點D重合得到線段DC,連接BC與y軸相交于點M.
(1)求點C的坐標;
(2)如圖2,動點P從A點出發(fā),沿折線AB-BC運動,運動到點C即停止運動,速度為每秒2個單位長度,設運動時間為t秒,當點P運動至線段BC上時,請用含有t的代數式表示在這一運動過程中線段PM的長,并直接寫出t的取值范圍;
(3)在(2)的條件下,y軸上有一點E(0,2),在點P在折線AB-BC運動過程中是否存在t值,使三角形PBE的面積為2,若存在,求出t值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,,,,動點P從點A開始沿邊AC向點C以每秒1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作,交AB于點D,連接PQ,點P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t秒.
直接用含t的代數式分別表示:______,______;
是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由.
如圖2,在整個運動過程中,求出線段PQ中點M所經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,點A(0,4),B(﹣3,4),C(﹣6,0),動點P從點A出發(fā)以1個單位/秒的速度在y軸上向下運動,動點Q同時從點C出發(fā)以2個單位/秒的速度在x軸上向右運動,過點P作PD⊥y軸,交OB于D,連接DQ.當點P與點O重合時,兩動點均停止運動.設運動的時間為t秒.
(1)當t=1時,求線段DP的長;
(2)連接CD,設△CDQ的面積為S,求S關于t的函數解析式,并求出S的最大值;
(3)運動過程中是否存在某一時刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】公安人員在破案時常常根據案發(fā)現場作案人員留下的腳印推斷犯人的身高,如果用a表示腳印長度,b表示身高,關系類似滿足于:
(1)某人腳印長度為24.5cm,則他的身高約為多少?(精確到1cm)
(2)在某次案件中,抓獲了兩可疑人員,甲的身高為1.83m,乙的身高為1.89m,在現場測量的腳印為26.3cm,請你幫助偵察一下。哪個可疑人員的可能性更大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com