【題目】已知ABC中,A=60°,ACB=40°,DBC邊延長線上一點(diǎn),BM平分ABC,E為射線BM上一點(diǎn).若直線CE垂直于ABC的一邊,則BEC=____°

【答案】10°或50°或130°

【解析】

分三種情況討論:當(dāng)CE⊥BC時(shí);當(dāng)CE⊥AB時(shí);當(dāng)CE⊥AC時(shí);根據(jù)垂直的定義和三角形內(nèi)角和計(jì)算即可得到結(jié)論.

解:①如圖1,當(dāng)CEBC時(shí),

∵∠A=60°,∠ACB=40°,

∴∠ABC=80°,

BM平分∠ABC,

∴∠CBE=ABC=40°,

∴∠BEC=90°-40°=50°;

②如圖2,當(dāng)CEAB時(shí),

∵∠ABE=ABC=40°,

∴∠BEC=90°+40°=130°;

③如圖3,當(dāng)CEAC時(shí),

∵∠CBE=40°,∠ACB=40°,

∴∠BEC=180°-90°-40°-40°=10°;

綜上所述:∠BEC的度數(shù)為10°,50°,130°,

故答案為:10°,50°,130°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>

,則實(shí)數(shù)x的取值范圍是

當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;

其中,正確的結(jié)論有  (填寫所有正確的序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科幻小說《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測(cè)試出這種植物高度的增長情況(如下表):

溫度 /℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增長量 /mm

……

41

49

49

41

25

19.75

……

這些數(shù)據(jù)說明:植物每天高度增長量 關(guān)于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時(shí),這種植物每天高度增長量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實(shí)驗(yàn)室的溫度x應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)CA重合,點(diǎn)D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F;

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線的性質(zhì):三角形的中線等分三角形的面積.

(經(jīng)驗(yàn)發(fā)展)面積比和線段比的聯(lián)系:

1)如圖1,MABCAB上一點(diǎn),且BM=2AM.若ABC的面積為a,若CBM的面積為S,則S=_______(用含a的代數(shù)式表示)

(結(jié)論應(yīng)用)(2)如圖2,已知CDE的面積為1,,,求ABC的面積.

(遷移應(yīng)用)(3)如圖3.在ABC中,MAB的三等分點(diǎn)()NBC的中點(diǎn),若ABC的面積是1,請(qǐng)直接寫出四邊形BMDN的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段公路經(jīng)測(cè)算發(fā)現(xiàn),勻速行駛的車輛通過該段公路時(shí),所需時(shí)間t(h)與行駛速度v(km/h)滿足反比例函數(shù)關(guān)系,其圖象為如圖所示的一段曲線.且端點(diǎn)為A(40,1)和B(m,0.5).

(1)求t與v的函數(shù)關(guān)系式及m的值;
(2)若該段公路限速50km/h,求通過該路段需要的最短時(shí)間和這段公路的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建國家衛(wèi)生城市,需要購買甲、乙兩種類型的分類垃圾桶替換原來的垃圾桶,,,三個(gè)小區(qū)所購買的數(shù)量和總價(jià)如表所示.

甲型垃圾桶數(shù)量(套)

乙型垃圾桶數(shù)量(套)

總價(jià)(元)

1)問甲型垃圾桶、乙型垃圾桶的單價(jià)分別是每套多少元?

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MNAD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長

查看答案和解析>>

同步練習(xí)冊(cè)答案