【題目】如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說明理由.
【答案】(1);(2)S=,運(yùn)動(dòng)1秒使△PBQ的面積最大,最大面積是;(3)t=或t=.
【解析】
試題分析:(1)把點(diǎn)A、B、C的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b、c的解析式,通過解方程組求得它們的值;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒.利用三角形的面積公式列出S△MBN與t的函數(shù)關(guān)系式.利用二次函數(shù)的圖象性質(zhì)進(jìn)行解答;
(3)根據(jù)余弦函數(shù),可得關(guān)于t的方程,解方程,可得答案.
試題解析:(1)∵點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1,∴A(﹣2,0),把點(diǎn)A(﹣2,0)、B(4,0)、點(diǎn)C(0,3),分別代入(a≠0),得:,解得:,所以該拋物線的解析式為:;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AM=3t,BN=t,∴MB=6﹣3t.由題意得,點(diǎn)C的坐標(biāo)為(0,3).在Rt△BOC中,BC==5.如圖1,過點(diǎn)N作NH⊥AB于點(diǎn)H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MBHN=(6﹣3t)t,即S= =,當(dāng)△PBQ存在時(shí),0<t<2,∴當(dāng)t=1時(shí),S△PBQ最大=.
答:運(yùn)動(dòng)1秒使△PBQ的面積最大,最大面積是;
(3)如圖2,在Rt△OBC中,cos∠B=.
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AM=3t,BN=t,∴MB=6﹣3t.
①當(dāng)∠MNB=90°時(shí),cos∠B=,即,化簡,得17t=24,解得t=;
②當(dāng)∠BMN=90°時(shí),cos∠B=,化簡,得19t=30,解得t=.
綜上所述:t=或t=時(shí),△MBN為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果|a|=|b|,那么a,b兩個(gè)實(shí)數(shù)一定是( )
A.都等于0
B.一正一負(fù)
C.相等
D.相等或互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為( )
A.(,) B.(2,) C.(,) D.(,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三地的海拔高度分別為20m、﹣15m和﹣10m,那么最高的地方比最低的地方高( )
A.5m
B.10m
C.25m
D.35m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將x2+4x﹣5=0進(jìn)行配方變形,下列正確的是( )
A.(x+2)2=9
B.(x﹣2)2=9
C.(x+2)2=1
D.(x﹣2)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2 其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的第一邊長為3a+2b,第二邊比第一邊長a﹣b,第三邊比第二邊短2a.請(qǐng)用a、b式子分別表示第二邊和第三邊,并求這個(gè)三角形的周長(最后結(jié)果都要求最簡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個(gè)根為0,則a的值為( )
A.1或﹣1
B.﹣1
C.1
D.0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com