【題目】某天,一蔬菜經營戶用234元錢從蔬菜批發(fā)市場批了西紅柿和茄子共50公斤到菜市場去賣,西紅柿和茄子這天的批發(fā)價與零售價如下表所示:
問:(1)該經營戶當天在蔬菜批發(fā)市場批了西紅柿和茄子各多少公斤?
(2)他當天賣完這些西紅柿和茄子能賺多少錢?
【答案】(1)西紅柿30公斤,茄子20公斤;
(2)他當天賣完這些西紅柿和茄子能賺56元.
【解析】試題分析:
(1)設西紅柿買了公斤,則茄子買了公斤,根據兩者的進價和總金額可列出方程,解方程即可求得答案;
(2)由題意可知,每公斤西紅柿賺1.2元,每公斤茄子賺1元,結合(1)中解得結果計算即可;
試題解析:
設該經營戶當天買了西紅柿x公斤,茄子(50-x)公斤,由題意得:
4.8x+4.5(50-x)=234,
解得:x=30,
∴50x=50-30=20(公斤).
答:西紅柿30公斤,茄子20公斤.
(2)由題意可知,每公斤西紅柿賺1.2元,每公斤茄子賺1元,
則當天的利潤=30×1.2+20×1=56(元).
答:他當天賣完這些西紅柿和茄子能賺56元.
科目:初中數學 來源: 題型:
【題目】【新知理解】
如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB的“巧點”.
線段的中點__________這條線段的“巧點”;(填“是”或“不是”).
若AB = 12cm,點C是線段AB的巧點,則AC=___________cm;
【解決問題】
(3) 如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當其中一點到達終點時,運動停止,設移動的時間為t(s).當t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過E點作EF∥AB(經過直線外一點有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD(已知)
所以∠2=∠3.( )
又因為∠1=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因為∠BAC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是2015年12月月歷.
(1)如圖,用一正方形框在表中任意框住4個數,記左上角的一個數為x,則另三個數用含x的式子表示出來,從小到大依次是 , , .
(2)在表中框住四個數之和最小記為a1,和最大記為a2,則a1+a2= .
(3)當(1)中被框住的4個數之和等于76時,x的值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是等邊△ABC內一點,連接PA,PB,PC,PA:PB:PC=3:4:5,以AC為邊作△AP′C≌△APB,連接PP′,則有以下結論:①△APP′是等邊三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正確的是 . (把所有正確答案的序號都填在橫線上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com