【題目】如圖,⊙O的直徑AB長為12,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB.
(2)設(shè)AD交⊙O于點(diǎn)M,當(dāng)∠B=60°時(shí),求弧AM的長.
【答案】(1)證明見解析;(2)弧AM的長為2π.
【解析】
(1)連接OC,根據(jù)切線性質(zhì)求出OC⊥CD,根據(jù)平行線的判定得出AD∥OC,即可求出答案;
(2)連接BM和OM,求出∠AOM的度數(shù),根據(jù)弧長公式求出即可.
(1)證明:連接OC,
∵DC是⊙O的切線,
∴OC⊥DC,
∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OAC,
即AC平分∠DAB;
(2)解:
連接BM、OM,
∵AB是⊙O的直徑,
∴∠AMB=90°,∠ACB=90°,
∵∠ABC=60°,
∴∠CAB=30°,
∴∠DAB=2×30°=60°,
∴∠MBA=30°,
∴∠MOA=60°,
∴弧AM的長為: =2π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的序號(hào)____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.
(1)若房價(jià)定為200元時(shí),求賓館每天的利潤;
(2)房價(jià)定為多少時(shí),賓館每天的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市移動(dòng)通訊公司開設(shè)了兩種通訊業(yè)務(wù): “全球通” 使用者先繳50元月基礎(chǔ)費(fèi), 然后每通話1分鐘, 再付電話費(fèi)0.4元; “神州行” 不繳月基礎(chǔ)費(fèi), 每通話1分鐘, 付話費(fèi)0.6元(這里均指市內(nèi)通話). 若一個(gè)月內(nèi)通話x分鐘, 兩種通訊方式的費(fèi)用分別為y1元和y2元.
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)一個(gè)月內(nèi)通話多少分鐘, 兩種通訊方式的費(fèi)用相同?
(3)若某人預(yù)計(jì)一個(gè)月內(nèi)使用話費(fèi)200元, 則應(yīng)選擇哪種通訊方式較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過的路徑長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校兩次購買足球和籃球的支出情況如表:
(1)求購買一個(gè)足球、一個(gè)籃球的花費(fèi)各需多少元?(請(qǐng)列方程組求解)
(2)學(xué)校準(zhǔn)備給幫扶的貧困學(xué)校送足球、籃球共計(jì)60個(gè),恰逢市場對(duì)兩種球的價(jià)格進(jìn)行了調(diào)整,足球售價(jià)提高了10%,籃球售價(jià)降低了10%,如果要求一次性購得這批球的總費(fèi)用不超過4000元,那么最多可以購買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣4ax(a≠0)的圖象與直線y=kx+3交于點(diǎn)A(﹣1,)、點(diǎn)C兩點(diǎn).
(1)求a,k的值;
(2)點(diǎn)P在第一象限的拋物線上,其橫坐標(biāo)為t,連接PC、PA,設(shè)△PCA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式:(直接寫出t的取值范圍)
(3)在(2)的條件下,作CE⊥x軸于E,點(diǎn)P直線y=kx+3下方時(shí),連接OP、BC交于D,連接ED,當(dāng)∠ODE=90°時(shí),求t和S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.
(2)求△AOB的面積.
(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com