如圖,在直角坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B在x軸上且在點(diǎn)A的右端,OA=AB,分別過點(diǎn)A、B作x軸的垂線,與二次函數(shù)y=x2的圖象交于C、D兩點(diǎn),分別過點(diǎn)C、D作y軸的垂線,交y軸于點(diǎn)E、F,直線CD交y軸于點(diǎn)H.
(1)驗(yàn)證:S矩形OACE:S梯形ECDF=2:9;
(2)如果點(diǎn)A的坐標(biāo)改為(t,0)(t>0),其他條件不變,(1)的結(jié)論是否成立?請說明理由.
(3)如果點(diǎn)A的坐標(biāo)改為(t,0)(t>0),二次函數(shù)改為y=ax2(a>0),其他條件不變,記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的橫坐標(biāo)為yH,試證明:xCxD=-
1a
yH
分析:(1)根據(jù)拋物線的解析式分別求出點(diǎn)C,點(diǎn)D的坐標(biāo),然后分別求出矩形OACE和矩形OBDF的面積就可以求出結(jié)論.
(2)根據(jù)點(diǎn)A的坐標(biāo)及OA=AB就可以用含t的式子表示出B、C、D的坐標(biāo),在根據(jù)矩形的面積公式就可以分別求出矩形的面積從而求出結(jié)論.
(3)根據(jù)點(diǎn)A的坐標(biāo)及OA=AB就可以用含t的式子表示出B、C、D的坐標(biāo),然后根據(jù)C、D兩點(diǎn)的坐標(biāo)求出直線CD的解析式進(jìn)而求出H點(diǎn)的坐標(biāo),然后可根據(jù)這些點(diǎn)的坐標(biāo)進(jìn)行求解即可;
解答:解:(1)∵點(diǎn)A的坐標(biāo)為(1,0),
∴OA=1,C(1,1),
∴S矩形OACE=1
∵OA=AB,
∴AB=1,
∴B(2,0),D(2,4)
∴S梯形ECDF=4.5,
∴S矩形OACE:S梯形ECDF=1:4.5=2:9;

(2)(1)的結(jié)論仍然成立.
∵當(dāng)A的坐標(biāo)(t,0)(t>0)時,點(diǎn)B的坐標(biāo)為(2t,0),點(diǎn)C坐標(biāo)為(t,t2),點(diǎn)D的坐標(biāo)為(2t,4t2),
∴S矩形OACE=t3,S梯形ECDF=4.5t3
∴S矩形OACE:S梯形ECDF=2:9

(3)由題意,當(dāng)二次函數(shù)的解析式為y=ax2(a>0),且點(diǎn)A坐標(biāo)為(t,0)(t>0)時,點(diǎn)C坐標(biāo)為(t,at2),點(diǎn)D坐標(biāo)為(2t,4at2),
設(shè)直線CD的解析式為y=kx+b,則:
tk+b=at2
2tk+b=4at2
,
解得:
k=3at
b=-2at2
,
∴直線CD的函數(shù)解析式為y=3atx-2at2,則點(diǎn)H的坐標(biāo)為(0,-2at2),yH=-2at2
∵xC•xD=2t2,
∴xC•xD=-
1
a
yH
點(diǎn)評:本題主要考查了二次函數(shù)的應(yīng)用、一次函數(shù)解析式的確定、圖形面積的求法、函數(shù)圖象的交點(diǎn)等知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系內(nèi),點(diǎn)B、C在x軸的負(fù)半軸上,點(diǎn)A在y軸的負(fù)半軸上.以AC為直徑的圓與精英家教網(wǎng)AB的延長線交于點(diǎn)D,弧CD=弧AO,如果AB=10,AO>BO,且AO、BO是x的二次方程x2+kx+48=0的兩個根.
(1)求點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P在直徑AC上,且AP=
14
AC,判斷點(diǎn)(-2,-10)是否在過D、P兩點(diǎn)的直線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系內(nèi),過點(diǎn)C(3,6)分別作x軸和y軸的垂線CB和CA,垂足分別為B和A,點(diǎn)P從點(diǎn)O沿OB向B以1個長度單位/秒的速度運(yùn)動,點(diǎn)Q從點(diǎn)B沿BC向C以2個長度單位/秒的速度運(yùn)動.如果P、Q分別從O、B同時出發(fā),運(yùn)動時間為t,試求:
(1)t為何值時,△PBQ的面積等于2個平方單位;
(2)若P、B、Q三點(diǎn)構(gòu)成的三角形與A、B、C三點(diǎn)構(gòu)成的三角形相似,求此時P和Q點(diǎn)的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系內(nèi),已知等腰梯形ABCD,AD∥BC∥x軸,AB=CD,AD=2,BC=8,AB=5,B點(diǎn)的坐標(biāo)是(-1,5).
(1)直接寫出下列各點(diǎn)坐標(biāo).A(,)C(,)D(,);
(2)等腰梯形ABCD繞直線BC旋轉(zhuǎn)一周形成的幾何體的表面積(保留π);
(3)直接寫出拋物線y=x2左右平移后,經(jīng)過點(diǎn)A的函數(shù)關(guān)系式;
(4)若拋物線y=x2可以上下左右平移后,能否使得A,B,C,D四點(diǎn)都在拋物線上?若能,請說理由;若不能,將“拋物線y=x2”改為“拋物線y=mx2”,試確定m的值,使得拋物線y=mx2經(jīng)過上下左右平移后能同時經(jīng)過A,B,C,D四點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•西城區(qū)二模)如圖,在直角坐標(biāo)系內(nèi)有點(diǎn)P(1,1)、點(diǎn)C(1,3)和二次函數(shù)y=-x2
(1)若二次函數(shù)y=-x2的圖象經(jīng)過平移后以C為頂點(diǎn),請寫出平移后的拋物線的解析式及一種平移的方法;
(2)若(1)中平移后的拋物線與x軸交于點(diǎn)A、點(diǎn)B(A點(diǎn)在B點(diǎn)的左側(cè)),求cos∠PBO的值;
(3)在拋物線上是否存在一點(diǎn)D,使線段OC與PD互相平分?若存在,求出D點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案