【題目】在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,則∠C的度數(shù)為_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①直線AB和直線BA是同一條直線;②平角是一條直線;③兩點(diǎn)之間,線段最短;④如果AB=BC,則點(diǎn)B是線段AC的中點(diǎn).其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.
(1)求證:AB=AC;
(2)若,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF
(1)求證:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30。 , 求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù) 1,1,2,3,x的平均數(shù)是3,則這組數(shù)據(jù)的眾數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選)下列說(shuō)法錯(cuò)誤的是(__________)
A. 了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調(diào)查
B. 為了了解全班學(xué)生的體溫情況,采用全面調(diào)查的方式
C. 兩直線平行,內(nèi)錯(cuò)角互補(bǔ)是必然條件
D. 可能性是1%的事件在一次試驗(yàn)中一定不會(huì)發(fā)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P與點(diǎn)Q不重合,以點(diǎn)P為圓心作經(jīng)過(guò)Q的圓,則稱該圓為點(diǎn)P、Q的“相關(guān)圓”
(1)已知點(diǎn)P的坐標(biāo)為(2,0)①若點(diǎn)Q的坐標(biāo)為(0,1),求點(diǎn)P、Q的“相關(guān)圓”的面積;②若點(diǎn)Q的坐標(biāo)為(3,n),且點(diǎn)P、Q的“相關(guān)圓”的半徑為,求n的值;
(2)已知△ABC為等邊三角形,點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(﹣,0)、(,0),點(diǎn)C在y軸正半軸上,若點(diǎn)P、Q的“相關(guān)圓”恰好是△ABC的內(nèi)切圓且點(diǎn)Q在直線y=2x上,求點(diǎn)Q的坐標(biāo).
(3)已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為:A(﹣3,0)、B(,0),C(0,4),點(diǎn)P的坐標(biāo)為(0, ),點(diǎn)Q的坐標(biāo)為(m, ),若點(diǎn)P、Q的“相關(guān)圓”與△ABC的三邊中至少一邊存在公共點(diǎn),直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+x﹣a=0的一個(gè)根為2,則另一個(gè)根是( )
A.﹣3
B.﹣2
C.3
D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com