【題目】(9分)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若A的對應(yīng)點A2的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
【答案】(1)見解析 (2) (1.5,3)
【解析】試題分析:(1)先根據(jù)中心對稱的性質(zhì),找到點A,B關(guān)于點C的對稱點連接三點即可得到△A1B1C,再根據(jù)平移的性質(zhì),確定A到平移的方向和距離,根據(jù)平移性質(zhì)確定B, C的對應(yīng)點,連接,
(2)根據(jù)中心對稱圖形的性質(zhì),旋轉(zhuǎn)中心是對應(yīng)點連線的中心,可連接,三條線段的交點即為旋轉(zhuǎn)中心,利用中點坐標(biāo)公式可以求出旋轉(zhuǎn)中心.
試題解析: (1)△A1B1C, △A2B2C2如圖所示,
(2)旋轉(zhuǎn)中心坐標(biāo)為(1.5,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個函數(shù)圖象交點的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a>0)只有一個整數(shù)解,則a的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一些大小相同,棱長為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個數(shù).
(1)請畫出它的主視圖和左視圖;
(2)給這個幾何體噴上顏色(底面不噴色),需要噴色的面積為
(3)在不改變主視圖和俯視圖的情況下,最多可添加塊小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”前期,某花店購進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.
(1)求降價后每枝玫瑰的售價是多少元?
(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價為2元/枝,玫瑰進(jìn)價為1.5元/枝,問至少購進(jìn)玫瑰多少枝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果x+y=0,那么x , y兩個數(shù)一定是( ).
A.x=y=0
B.一正一負(fù)
C.x與y互為相反數(shù)
D.x與y互為倒數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CP是AB的中垂線且交AB于P,其中AP=2CP.甲、乙兩人想在AB上取兩點D、E,使得AD=DC=CE=EB,其作法如下:
甲:作∠ACP、∠BCP之角平分線,分別交AB于D、E,則D、E即為所求;
乙:作AC、BC之中垂線,分別交AB于D、E,則D、E即為所求.
對于甲、乙兩人的作法,下列判斷何者正確( 。
A. 兩人都正確 B. 兩人都錯誤 C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:(2),(4,6),(8,10,12),(14,16,18,20),…,現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左往右數(shù)).如A2=(1,1),A10=(3,2),A18=(4,3),則A2018可表示為( )
A.(45,19)
B.(45,20)
C.(44,19)
D.(44,20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( 。
A. 長方體、正方體都是棱柱 B. 圓錐和圓柱的底面都是圓
C. 三棱柱的底面是三角形 D. 六棱柱有6條棱、6個側(cè)面、側(cè)面為長方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com