【題目】計算:(1)

(2);

(3)m為正整數(shù)).

【答案】(1)0;(2)a12-4nb4m;(3)0.

【解析】

1)運用同底數(shù)的冪的乘法法則,然后利用冪的乘方法則計算即可;

(2) 首先利用積的乘方以及冪的乘方法則計算,然后利用同底數(shù)的冪的乘法法則計算,最后根據(jù)負指數(shù)次冪的意義即可;

(3) 將原式中的各因式化為相同底數(shù),再進行加減.

(1)原式=x8+x8-x·x4·x3+x3·x4×(-x

=x8+x8-x8-x8

=0.

(2)原式=(a6-2nb2m-2)(16a6-2nb2m+2

=a12-4nb4m

(3)原式=22m-1×24×(23m-1+(-22m)×23m

=22m+3×23m-3-25m

=25m-25m

=0.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.

(1)求每件甲種、乙種玩具的進價分別是多少元;

(2)近期批發(fā)商有優(yōu)惠活動,如圖所示,如果超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進哪種玩具更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是 萬元,收購成本為 萬元,求 的值;
(2)設(shè)這批淡水魚放養(yǎng) 天后的質(zhì)量為 ),銷售單價為 元/ .根據(jù)以往經(jīng)驗可知: 的函數(shù)關(guān)系為 的函數(shù)關(guān)系如圖所示.

①分別求出當 時, 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當 為何值時, 最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AE=CD,AD、BE相交于點F.

(1)求證:△ABE≌△CAD;

(2)若BP⊥AD于點P,PF=9,EF=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=30°,將ABC繞點B旋轉(zhuǎn)α(0<α<60°)到A′BC′,AC和邊A′C′相交于點P,邊AC和邊BC′相交于Q.BPQ為等腰三角形時,則α=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標價購買.三次購買商品A、B的數(shù)量和費用如下表:

購買商品A的數(shù)量/

購買商品B的數(shù)量/

購買總費用/

第一次購物

6

5

1140

第二次購物

3

7

1110

第三次購物

9

8

1062

(1)小林以折扣價購買商品A、B是第 次購物;

(2)求出商品AB的標價;

(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DE∥BC, AB∥CD,EAB的中點,∠A=∠B.下列結(jié)論:①CD=AE;②AC=DE;③AC平分∠BCD;④O點是DE的中點;⑤AC=AB.其中正確的是( 。

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,△ABC在平面直角坐標系中的位置如圖所示.

(1)把△ABC向下平移2個單位長度得到△A1B1C1,請畫出△A1B1C1;

(2)請畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2,并寫出A2的坐標;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1,0),C(0,﹣3).

(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設(shè)△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設(shè)拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案