用配方法解方程2x2-3x-5=0,配方后可得方程:
 
分析:配方法的一般步驟:
(1)把常數(shù)項移到等號的右邊;
(2)把二次項的系數(shù)化為1;
(3)等式兩邊同時加上一次項系數(shù)一半的平方.
解答:解:由原方程移項,得
2x2-3x=5,
把二次項的系數(shù)化為1,得
x2-
3
2
x=
5
2

等式兩邊同時加上一次項系數(shù)一半的平方,得
x2-
3
2
x+(
3
4
)
2
=
5
2
+(
3
4
)
2
,
(x-
3
4
)
2
=
49
16

故答案是:(x-
3
4
)
2
=
49
16
點評:此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解方程2x2-x-1=0,變形結(jié)果正確的是(  )
A、(x-
1
2
2=
3
4
B、(x-
1
4
2=
3
4
C、(x-
1
4
2=
17
16
D、(x-
1
4
2=
9
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解方程2x2+4x+1=0時,原方程應(yīng)變形為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解方程2x2+2x=1,則配方后的方程是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按要求解下列方程:
(1)用配方法解方程2x2+3x-1=0;
(2)用公式法解方程(x+1)(3x-1)=0;
(3)用因式分解法解方程(2x+1)2=(x-3)2

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷