【題目】已知等邊三角形ABC的邊長為8,P是BC邊上一點,連接AP,若AP=7,則BP的長為

【答案】3或5
【解析】解:如圖1所示,
過點A作AD⊥BC,
設(shè)DP=x,
∵△ABC為等邊三角形,AD⊥BC,
∴BD= =4,
在Rt△ABD中,
AD2=AB2﹣BD2=82﹣42=48,
在Rt△APD中,
DP2=AP2﹣AD2=72﹣48=1,
∴DP=1,
∴BP=5;
當點P在AD的左側(cè)時,如圖2所示,

同理可得,BP=BD﹣PD=4﹣1=3,
綜上所述,BP的長為3或5,
所以答案是:3或5.
【考點精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個角都相等并且每個角都是60°,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAP+∠APD180°,∠AOE=∠1,∠FOP=∠2.

(1)若∠155°,求∠2的度數(shù);

(2)求證:AEFP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正六邊形ABCDEF中,N、M為邊上的點,BM、AN相交于點P

(1)如圖1,若點N在邊BC上,點M在邊DC上,BN=CM,求證:BPBM=BNBC;

(2)如圖2,若N為邊DC的中點,M在邊ED上,AM∥BN,求 的值;

(3)如圖3,若N、M分別為邊BC、EF的中點,正六邊形ABCDEF的邊長為2,請直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC平分∠DAB,ABD=52°,ABC=116°,ACB=α°,則∠BDC的度數(shù)為( 。

A. α B. C. 90﹣α D. 90﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在AD上,連接CE并延長與BA的延長線交于點F,若AE=2ED,則下列結(jié)論錯誤的是(
A.EF=2CE
B.SAEF= SBCF
C.BF=3CD
D.BC= AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一點,連接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,則AC長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)為了解該校學(xué)生對四種國家一級保護動物的喜愛情況,圍繞“在丹頂鶴、大熊貓、滇金絲猴、藏羚羊四種國家一級保護動物中,你最喜歡哪一種動物?(必選且只選一種)”這一問題,在全校范圍內(nèi)隨機抽取部分同學(xué)進行問卷調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如下不完整的條形統(tǒng)計圖.其中最喜歡丹頂鶴的學(xué)生人數(shù)占被抽取人數(shù)的16%;請你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜歡滇金絲猴的學(xué)生有多少名?并補全條形統(tǒng)計圖;
(3)如果全校有1200名學(xué)生,請你估計全校最喜歡大熊貓的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.

(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點P,使△APB的周長最;

在直線m上作出該點P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陰影部分是邊長為a的大正方形中剪去一個邊長為b的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗證平方差公式的是( )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

同步練習(xí)冊答案