【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.
(1)求兩點的坐標;
(2)求拋物線的解析式;
(3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.
【答案】(1)A(4,0),C(0,﹣4);(2) ;(3)PD的最大值為,此時點P(2,﹣6).
【解析】
(1)OA=OC=4OB=4,即可求解;
(2)拋物線的表達式為: ,即可求解;
(3),即可求解.
解:(1)OA=OC=4OB=4,
故點A、C的坐標分別為(4,0)、(0,﹣4);
(2)拋物線的表達式為:,
即﹣4a=﹣4,解得:a=1,
故拋物線的表達式為: ;
(3)直線CA過點C,設(shè)其函數(shù)表達式為:,
將點A坐標代入上式并解得:k=1,
故直線CA的表達式為:y=x﹣4,
過點P作y軸的平行線交AC于點H,
∵OA=OC=4,
,
∵
,
設(shè)點 ,則點H(x,x﹣4),
∵ <0,∴PD有最大值,當x=2時,其最大值為,
此時點P(2,﹣6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,M、N分別為邊BC、CD上的動點,且∠MAN=45°
(1)猜想線段BM、DN、MN的數(shù)量關(guān)系并證明;
(2)若BM=CM,P是MN的中點,求AP的長;
(3)M、N運動過程中,請直接寫出△AMN面積的最大值 和最小值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC=8,點A在半徑為5的⊙O上,點O在直線l上.
(1)如圖①,若⊙O經(jīng)過點C,交BC于點D,求CD的長.
(2)在(1)的條件下,若BC邊交l于點E,OE=2,求BE的長.
(3)如圖②,若直線l還經(jīng)過點C,BC是⊙O 的切線,F為切點,則CF的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點P從點A開始沿邊AB向B以2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設(shè)運動的時間為ts,四邊形APQC的面積為ymm2.
(1)y與t之間的函數(shù)關(guān)系式;
(2)求自變量t的取值范圍;
(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)y2=(x>0)的圖象相交于點A(,2),點B是反比例函數(shù)圖象上一點,它的橫坐標是3,連接OB,AB,則△AOB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 深圳某校初三為提高學(xué)生長跑成績,把每天的課間操改為“環(huán)校跑”,現(xiàn)測得初三(1)班全體同學(xué)的成績?nèi)鐖D,請你根據(jù)提供的信息,解答下列問題:
(1)初三(1)班共有______人;
(2)在扇形統(tǒng)計圖中,“良好”所在扇形圓心角等于______度;
(3)請你補充條形統(tǒng)計圖;
(4)若該年級共有650名學(xué)生,請你估計該年級喜歡“不及格”的學(xué)生人數(shù)約是______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是拋物線上兩點,則y1<y2,其中說法正確的是( 。
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等邊三角形,點D是△ABC(包含邊界)平面內(nèi)一點,連接CD,將線段CD繞C逆時針旋轉(zhuǎn)60°得到線段CE,連接BE,DE,AD,并延長AD交BE于點P.
(1)觀察填空:當點D在圖1所示的位置時,填空:
①與△ACD全等的三角形是______.
②∠APB的度數(shù)為______.
(2)猜想證明:在圖1中,猜想線段PD,PE,PC之間有什么數(shù)量關(guān)系?并證明你的猜想.
(3)拓展應(yīng)用:如圖2,當△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com