二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點A(3,0),B(2,-3),并且以x=1為對稱軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對稱軸x=1上是否存在一點P,使△PAB中PA=PB?若存在,求出P點的坐標;若不存在,說明理由.
【答案】分析:(1)根據對稱軸的公式x=-和函數(shù)的解析式,將x=1和A(3,0),B(2,-3)代入公式,組成方程組解答;
(2)求出圖象與坐標軸的交點坐標,描點即可;
(3)根據兩點之間距離公式解答.
解答:解:(1)把點A(3,0),B(2,-3)代入y=ax2+bx+c依題意,
整理得
解得,
∴解析式為y=x2-2x-3;

(2)二次函數(shù)圖象如右;

(3)存在.
作AB的垂直平分線交對稱軸x=1于點P,
連接PA、PB,則PA=PB,
設P點坐標為(1,m),則22+m2=(-3-m)2+1
解得m=-1,
∴點P的坐標為(1,-1).
點評:(1)所用方法被稱為待定系數(shù)法;(2)考查了二次函數(shù)草圖的畫法;(3)會用距離公式L=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案