【題目】(本小題滿分8分)

如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長

【答案】解:由已知得.正五邊形周長為,正六邊形周長為

因為正五邊形和正六邊形的周長相等.所以

整理得,,配方得.解得(舍去)

故正五邊形的周長為

又因為兩段鐵絲等長,所以這兩段鐵絲的總長為420cm.

答:這兩段鐵絲的總長為420cm

【解析】

試題根據(jù)正五邊形和正六邊形的周長相等,列一元二次方程求x的值,得出正六邊形的邊長,再根據(jù)所求邊長即可求兩段鐵絲的總長.

試題解析:由已知得,正五邊形周長為5x2+17cm,正六邊形周長為6x2+2xcm,

正五邊形和正六邊形的周長相等,

∴5x2+17=6x2+2x),

整理得x2+12x-85=0,配方得(x+62=121,

解得x1=5x2=-17(舍去),

故正五邊形的周長為(cm).

又因為兩段鐵絲等長,所以這兩段鐵絲的總長為420cm.

答:這兩段鐵絲的總長為420cm.

考點: 一元二次方程的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACF≌△DBE,其中點A、B、CD在一條直線上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cm,BC=5cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的O交BC于點D,交AC于點E,過點D作FGAC于點F,交AB的延長線于點G.

(1)求證:FG是O的切線;

(2)若tanC=2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著柴靜紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數(shù)相同.

(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?

(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進行降價銷售,經(jīng)市場調查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應將B型空氣凈化器的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)輛自行車,平均每天生產(chǎn)輛,由于各種原因實際每天生產(chǎn)量與計劃相比有出入.下表是某一周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負):

星期一

星期二

星期三

星期四

星期五

星期六

星期日

1)根據(jù)記錄可知前三天共生產(chǎn)_________輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛;

3)該廠實行周計劃工作制,每輛車元,超額完成任務,超過的部分再獎勵元,完不成任務時,每少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總金額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學進行了6輪投籃比賽,兩人的得分情況統(tǒng)計如下:


1

2

3

4

5

6


10

14

12

18

16

20


12

11

9

14

22

16

下列說法不正確的是(

A. 甲得分的極差小于乙得分的極差 B. 甲得分的中位數(shù)大于乙得分的中位數(shù)

C. 甲得分的平均數(shù)大于乙得分的平均數(shù) D. 乙的成績比甲的成績穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AO=OB,OC=OD,ADBC相交于點E,則圖中全等三角形有( )對.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:

①4acb2

方程 的兩個根是x1=1,x2=3

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB=12,動點PA出發(fā),以每秒2個單位的速度沿射線AB運動,MAP的中點.

1)出發(fā)多少秒后,PB=2AM?

2)當P在線段AB上運動時,試說明2BM﹣BP為定值.

3)當PAB延長線上運動時,NBP的中點,下列兩個結論:①MN長度不變;②MA+PN的值不變,選擇一個正確的結論,并求出其值.

查看答案和解析>>

同步練習冊答案