【題目】如圖,在四邊形中,,,于點,,,則( )
A.B.C.2D.3
【答案】A
【解析】
如圖,連接AC,作CF⊥AB于F,CE⊥AD交AD的延長線于E.證明△CED≌△CFB(AAS),Rt△ACE≌Rt△ACF(HL),利用全等三角形的性質(zhì)解決問題即可.
如圖,連接AC,作CE⊥AD交AD的延長線于E.
∵∠B=60,∠ADC=120,
∴∠DAB+∠DCB=180,
∵∠E+∠CFA=180,
∴∠EAF+∠ECF=180,
∴∠ECF=∠DCB,
∴∠DCE=∠BCF,
∵∠E=∠CFB=90,CD=CB,
∴△CED≌△CFB(AAS),
∴CE=CF,DE=BF,
∵AC=AC,CE=CF,
∴Rt△ACE≌Rt△ACF(HL),
∴AE=AF,
∴AE-AD=DE=BF=,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題探究】
()如圖①,點是正高上的一定點,請在上找一點,使,并說明理由.
()如圖②,點是邊長為的正高上的一動點,求的最小值.
【問題解決】
()如圖③,、兩地相距, 是筆直第沿東西方向向兩邊延伸的一條鐵路.今計劃在鐵路線上修一個中轉(zhuǎn)站,再在間修一條筆直的公路.如果同樣的物資在每千米公路上的運費是鐵路上的兩倍.那么,為使通過鐵路由到再通過公路由到的總運費達(dá)到最小值,請確定中轉(zhuǎn)站\的位置,并求出的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個四邊形的兩條對角線相等且相互垂直,則稱這個四邊形為“等垂四邊形”.
如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據(jù)等垂四邊形對角線互相垂直的特征可得等垂四邊形的一個重要性質(zhì):等垂四邊形的面積等于兩條對角線乘積的一半.根據(jù)以上信息解答下列問題:
(1)矩形 “等垂四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請猜想OM與BC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.
⑴先從袋中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為_______,若A為隨機事件,則m的取值為______;
⑵若從袋中隨機摸出2個球,正好紅球、黑球各1個,用列表法與樹狀圖法求這個事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計算出現(xiàn)向上點數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2與l1交于點C(m,3),過動點M(n,0)作x軸的垂線與直線l1和l2分別交于P、Q兩點.
(1)求m的值及l2的函數(shù)表達(dá)式;
(2)當(dāng)PQ≤4時,求n的取值范圍;
(3)是否存在點P,使S△OPC=2S△OBC?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com