【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別,隨機從箱子里取出1個球,放回攪勻再取一次,請你用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果,求兩次取出的都是白球的概率.

【答案】解:畫樹狀圖得:

由樹形圖可知所有等可能的情況有9種,其中兩次取出的都是白色球有1種,所以兩次取出的都是白色球的概率=
【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次取出白顏色球的情況,再利用概率公式即可求得答案.
【考點精析】解答此題的關(guān)鍵在于理解列表法與樹狀圖法的相關(guān)知識,掌握當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,BECEEADCED,BE=3cmAD=9cm

求:(1DE的長;

2)若CEABC的外部(如圖),其它條件不變,DE的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC0.7m.

(1)求此時梯子的頂端A距地面的高度AC;

(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①兩點確定一條直線;

②兩點之間,線段最短;

③若∠AOCAOB,則射線OC是∠AOB的平分線;

④連接兩點之間的線段叫做這兩點間的距離;

⑤學(xué)校在小明家南偏東25°方向上,則小明家在學(xué)校北偏西25°方向上.

其中正確的有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)3x2,其中x=2;

(2)(-3xy-7y)+[4x-3(xy+y-2x)],其中xy=-2,x-y=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,邊BC長為3,高AH長為2,矩形EFMN的邊MN在BC邊上,其余兩個頂點E,F(xiàn)分別在AB,AC邊上,EF交AH于點G.
(1)求的值;
(2)當(dāng)EN為何值時,矩形EFMN的面積為△ABC面積的四分之一.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點D是AB邊上一點(不與AB重合),AD=kBD,過點D作∠EDF+∠C=180°,與CA、CB分別交于E、F.
(1)如圖1,當(dāng)DE=DF時,求的值.
(2)如圖2,若∠ACB=90°,∠B=30°,DE=m,求DF的長(用含k,m的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A(1,0)、B(11,0),點C為線段AB上一動點,以AC為直徑的⊙D的半徑DE⊥AC,△CBF是以CB為斜邊的等腰直角三角形,且點E、F都在第四象限,當(dāng)點F到過點A、C、E三點的拋物線的頂點的距離最小時,該拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AM、CN都是BD的垂線,M、N是垂足.

求證:(1AM=CN;(2)MAN=NCM

查看答案和解析>>

同步練習(xí)冊答案