【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為(

A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)

【答案】C.

【解析】

試題分析:作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.

直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),點C、D分別為線段AB、OB的中點,可得點C(﹣3,2),點D(0,2).再由點D′和點D關(guān)于x軸對稱,可知點D′的坐標為(0,﹣2).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,2),D′(0,﹣2),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣2.令y=﹣x﹣2中y=0,則0=﹣x﹣2,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計算正確的是( ).

A. a2a3=a6B. ﹣a32=a6C. 2ab4=8a4b4D. 2a2﹣3a2=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖北省荊州市第10題)如圖,在RtAOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉(zhuǎn)90°后得到AOB.若反比例函數(shù)的圖象恰好經(jīng)過斜邊AB的中點C,SABO=4,tanBAO=2,則k的值為(

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13 200元購進了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28 800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

(1)該商家購進的第一批襯衫是多少件?

(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完利潤率不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,BD=DC,∠ABD=∠ACD,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣(﹣1)4,23,﹣32,(﹣4)2這四個數(shù)中,最大的數(shù)與最小的數(shù)的和等于( 。

A. 7 B. 15 C. ﹣24 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設(shè)它們的運動時間為t(單位:s)(0<t<).

(1)如圖1,連接DQ平分∠BDC時,t的值為 ;

(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;

(3)請你繼續(xù)進行探究,并解答下列問題:

①證明:在運動過程中,點O始終在QM所在直線的左側(cè);

②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年蘇州市GDP(國內(nèi)生產(chǎn)總值)約為1860 000 000 000元.該數(shù)據(jù)可用科學(xué)記數(shù)法表示為( 。

A.1860×109B.186×1010C.18.6×1011D.1.86×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下現(xiàn)象:①水管里水的流動;②滑雪運動員在平坦的雪地上滑行;③射出的子彈;④火車在筆直的鐵軌上行駛.其中是平移的是( )
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案