【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點PCD中點,BP與半圓交于點Q,連接給出如下結論:;;其中正確的結論是______填寫序號

【答案】

【解析】

①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DOBP.結合OQOB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQDA1;

②連接AQ,如圖2,根據(jù)勾股定理可求出BP.易證RtAQBRtBCP,運用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到 的值;

③過點QQHDCH,如圖3.易證△PHQ∽△PCB,運用相似三角形的性質(zhì)可求出QH,從而可求出SDPQ的值;

④根據(jù)圖1和①中的結論可作判斷.

①連接OQ,OD,如圖1

易證四邊形DOBP是平行四邊形,從而可得DOBP,

∴∠AOD=∠OBP,∠DOQ=∠OQB,

OBOQ

∴∠OBP=∠OQB,

∴∠AOD=∠QOD,從而證到△AOD≌△QOD,

則有DQDA1

故①正確;

②連接AQ,如圖2

PCD的中點,

CPCD,BP

易證RtAQBRtBCP

,即

BQ,

PQBPBQ,

;

故②正確;

③過點QQHDCH,如圖3

易證△PHQ∽△PCB,

,即

QH ,

SDPQDPQH

故③錯誤;

④如圖1,由①知:△AOD≌△QOD,

∴∠ADQ2ODQ

ODPB,

∴∠ODQ=∠DQP

∴∠ADQ2DQP,

故④正確,

綜上所述:正確結論是①②④.

故答案為:①②④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩個反比例函數(shù)y=y=在第一象限內(nèi)的圖象如圖所示Py=的圖象上,PC⊥x軸于點C,y=的圖象于點A,PD⊥y軸于點D,y=的圖象于點B,當點Py=的圖象上運動時以下結論:①△ODB與△OCA的面積相等;②四邊形PAOB的面積不會發(fā)生變化;③PAPB始終相等;④當點APC的中點時,B一定是PD的中點.其中一定正確的是(   )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設了“3D”打印、數(shù)學編程、智能機器人、陶藝制作”四門創(chuàng)客課程,為了解學生對這四門創(chuàng)客課程的喜愛情況,數(shù)學興趣小組對全校學生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a=  ,b=  

2)“D”對應扇形的圓心角為  ;

3)根據(jù)調(diào)查結果,請你估計該校2000名學生中最喜歡“數(shù)學編程”創(chuàng)客課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為,吊臂底部A距地面參考數(shù)據(jù),

當?shù)醣鄣撞?/span>A與貨物的水平距離AC5m時,吊臂AB的長為______計算結果精確到;

如果該吊車吊臂的最大長度AD20m,那么從地面上吊起貨物的最大高度是多少?吊鉤的長度與貨物的高度忽略不計

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,高高的路燈掛在學校操場旁邊上方,高傲而明亮.王剛同學拿起一根長的竹竿去測量路燈的高度,他走到路燈旁的一個地方,點豎起竹竿(表示),這時他量了一下竹竿的影長正好是,他沿著影子的方向走,向遠處走出兩個竹竿的長度(即)到點,他又豎起竹竿(表示),這時竹竿的影長正好是一根竹竿的長度(即),此時,王剛同學抬頭若有所思地說道:噢,原來路燈有高呀.你覺得王剛同學的判斷對嗎?若對,請給出解答,若不對,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于兩點,與軸交于點,其中,.

(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Wy=x-4x+2的頂點為A,與x軸交于點B、C.

1)求∠ABC的正切值;

2)若點P是拋物線W上的一點,過P作直線PQ垂直x軸,將拋物線W關于直線PQ對稱,得到拋物線,設拋物線的頂點,問:是否存在這樣的點P,使得APAˊ為直角三角形?若存在,求出對稱所得的拋物線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習冊答案