【題目】已知二次函數(shù)y= x2+x﹣
(1)用配方法將y= x2+x﹣ 化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
(3)根據(jù)圖象填空:
①當(dāng)x時(shí),y隨x的增大而增大;
②當(dāng)﹣2<x<2時(shí),則y的取值范圍是;
③關(guān)于x的方程 x2+x﹣ =m沒有實(shí)數(shù)解,則m的取值范圍是

【答案】
(1)解:y= x2+x﹣ 化成y= (x2+2x+1﹣1)﹣ = (x+1)2﹣2
(2)解:函數(shù)圖象如圖所示,


(3)>﹣1;﹣2≤y< ;m<﹣2
【解析】解: (3)①由圖象可知當(dāng)x>﹣1時(shí),y隨x的增大而增大.所以答案是x>﹣1.②x=﹣2時(shí),y=﹣ ,x=2時(shí),y= ,x=﹣1時(shí),y=﹣2,
∴當(dāng)﹣2<x<2時(shí),則y的取值范圍是﹣2≤y<
所以答案是﹣2≤y ③由圖象可知m<﹣2時(shí),方程 x2+x﹣ =m沒有實(shí)數(shù)解.
所以答案是m<﹣2.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解拋物線與坐標(biāo)軸的交點(diǎn)(一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動(dòng)該項(xiàng)目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個(gè)乒乓球,乒乓球的單價(jià)為2元/個(gè),若購買20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購買10副橫拍球拍比購買5副直拍球拍多花費(fèi)1600元.
(1)求兩種球拍每副各多少元?
(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△AEC中,∠E=90°,請按如下要求進(jìn)行操作和判斷:

(1)尺規(guī)作圖:作△AEC的外接圓⊙O,并標(biāo)出圓心O(不寫畫法);
(2)延長CE,在CE的延長線上取點(diǎn)B,使EB=EC,連結(jié)AB,設(shè)AB與⊙O的交點(diǎn)為D(標(biāo)出字母B、D),判斷:圖中 相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,下列結(jié)論正確的有(
①AD=BD=BC;
②△BCD∽△ABC;
③AD2=ACDC;
④點(diǎn)D是AC的黃金分割點(diǎn).

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB=10cm,AD=4cm,作如下折疊操作.如圖1和圖2所示.在邊AB上取點(diǎn)M,在邊AD或DC上取點(diǎn)P,連接MP,將△AMP或四邊形AMPD沿著直線MP折疊到△A′MP或四邊形A′MPD′,點(diǎn)A落點(diǎn)為點(diǎn)A′,點(diǎn)D落點(diǎn)為點(diǎn)D′.
探究:

(1)如圖1,若AM=8cm,點(diǎn)P在AD上,點(diǎn)A′落在DC上,則∠MA′C的度數(shù)為
(2)如圖2,若AM=5cm,點(diǎn)P在DC上,點(diǎn)A′落在DC上.
①求證:△MA′P是等腰三角形;
②請直接寫出線段DP的長是
(3)若點(diǎn)M固定為AB的中點(diǎn),點(diǎn)P由A開始,沿A﹣D﹣C方向,在AD、DC邊上運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)速度為1cm/s,運(yùn)動(dòng)時(shí)間為t s,按操作要求折疊:
①求:當(dāng)MA′與線段DC有交點(diǎn)時(shí),t的取值范圍;
②直接寫出當(dāng)點(diǎn)A′到邊AB 的距離最大時(shí),t的值是
發(fā)現(xiàn):若點(diǎn)M在線段AB上移動(dòng),點(diǎn)P仍為線段AD或DC上的任意點(diǎn),隨著點(diǎn)M的位置不同,按操作要求折疊后,點(diǎn)A的落點(diǎn)A′的位置會出現(xiàn)以下三種不同的情況:不會落在線段DC上,只有一次落在線段DC上,會有兩次落在線段DC上.請直接寫出點(diǎn)A′有兩次落在線段DC上時(shí),AM的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解七年級學(xué)生上學(xué)期參加社會實(shí)踐活動(dòng)的情況,隨機(jī)抽查A市七年級部分學(xué)生參加社會實(shí)踐活動(dòng)天數(shù),并根據(jù)抽查結(jié)果制作了如下不完整的頻數(shù)分布表和條形統(tǒng)計(jì)圖.
A市七年級部分學(xué)生參加社會實(shí)踐活動(dòng)天數(shù)的頻數(shù)分布表

天數(shù)

頻數(shù)

頻率

3

20

0.10

4

30

0.15

5

60

0.30

6

a

0.25

7

40

0.20

A市七年級部分學(xué)生參加社會實(shí)踐活動(dòng)天數(shù)的條形統(tǒng)計(jì)圖

根據(jù)以上信息,解答下列問題;
(1)求出頻數(shù)分布表中a的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)A市有七年級學(xué)生20000人,請你估計(jì)該市七年級學(xué)生參加社會實(shí)踐活動(dòng)不少于5天的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt>0)秒

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù)用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

(3)若MAP的中點(diǎn),N為PB的中點(diǎn)點(diǎn)P在運(yùn)動(dòng)的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長;

(4)若點(diǎn)D是數(shù)軸上一點(diǎn),點(diǎn)D表示的數(shù)是x,請你探索式子是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.

查看答案和解析>>

同步練習(xí)冊答案