【題目】如圖,點A,B,CD在同一條直線上,點EF分別在直線AD的兩側,且AEDF,∠A=∠D,ABDC

1)求證:四邊形BFCE是平行四邊形;

2)如果AD5,DC,∠EBD60°,那么當四邊形BFCE為菱形時BE的長是多少?

【答案】1)見解析; 2BE2

【解析】

1)直接利用全等三角形的判定方法得出ABE≌△DCFSAS),進而求出BEFC,BEFC,即可得出答案;

2)直接利用菱形的性質得出EBC是等邊三角形,進而得出答案.

1)證明:在ABEDCF中,

,

∴△ABE≌△DCFSAS),

BEFC,ABEDCF

∴∠EBCFCB,

BEFC,

四邊形BFCE是平行四邊形;

2)當四邊形BFCE是菱形,

BEEC

AD5,DC,ABDC

BC2,

∵∠EBD60°,EBEC,

∴△EBC是等邊三角形,

BE2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A-2m)繞坐標原點O順時針旋轉90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內,⊙P的半徑為1,點P的坐標為(3,2),則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生的安全意識,在全校范圍內隨機抽取部分學生進行問卷調查.根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據以上信息,解答下列問題:

1)這次調查一共抽取了   名學生,將條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中,“較強”層次所占圓心角的大小為   °;

3)若該校有1800名學生,現(xiàn)要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,請你估計全校需要強化安全教育的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D都在⊙O上,AC,BD相交于點E,則∠ABD=( )

A. ∠ACD B. ∠ADB C. ∠AED D. ∠ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從甲市到乙市乘坐高鐵列車的路程為180千米,乘坐普通列車的路程為240千米,高鐵列車的平均速度是普通列車的平均速度的3倍,高鐵列車的乘車時間比普通列車的乘車時間縮短了2小時.

1)求高鐵列車的平均速度是每小時多少千米;

2)某日王老師要去距離甲市大約405m的某地參加1400召開的會議,如果他買到當日1040從甲市至該地的高鐵票,而且從該地高鐵站到會議地點最多需要1.5h,試問在高鐵列車準點到達的情況下他能在開會之前到達嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:△ABC的外接圓⊙O的圓心O在等腰△ABD的底邊AD上,點E為弧AB上的一點,AB平分∠EAD,∠C60°,ABBD3

1)求證:BD⊙O的切線;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就學生體育活動興趣愛好的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調查中,喜歡籃球項目的同學有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學校有800名學生,估計全校學生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.

查看答案和解析>>

同步練習冊答案