如圖,若直線AB∥ED,你能推得∠B、∠C、∠D之間的數(shù)量關(guān)系嗎?請(qǐng)說(shuō)明理由.
分析:過點(diǎn)C作CF∥AB,根據(jù)平行于同一條直線的兩直線平行,可得ED∥CF,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),可得∠1+∠D=180°,由∠1=∠BCD-∠2=∠BCD-∠B,即可得到結(jié)果.
解答:解:∠C+∠D-∠B=180°.理由如下:
如圖,過點(diǎn)C作CF∥AB,則∠B=∠2,
∵AB∥ED,CF∥AB,
∴ED∥CF(平行于同一條直線的兩直線平行).
∴∠1+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
而∠1=∠BCD-∠2=∠BCD-∠B,
∴∠BCD-∠B+∠D=180°,即∠BCD+∠D-∠B=180°.
點(diǎn)評(píng):本題考查了平行線的性質(zhì).角的等量代換的運(yùn)用是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,若直線AB分別平分∠COD和∠EOF.
(1)寫出圖中相等的角(指大于0°且小于180°的角);
(2)若∠AOE=120°,∠DOB=150°,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(0,4),C點(diǎn)坐標(biāo)為(10,0).
(1)如圖①,若直線AB∥OC,AB上有一動(dòng)點(diǎn)P,當(dāng)P點(diǎn)的坐標(biāo)為
(5,4)
時(shí),有PO=PC;
(2)如圖②,若直線AB與OC不平行,在過點(diǎn)A的直線y=-x+4上是否存在點(diǎn)P,使∠OPC=90°,若有這樣的點(diǎn)P,求出它的坐標(biāo).若沒有,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,4),C點(diǎn)的坐標(biāo)為(10,0).
精英家教網(wǎng)
(1)如圖①,若直線AB∥OC,AB上有一動(dòng)點(diǎn)P,當(dāng)P點(diǎn)的坐標(biāo)為
 
時(shí),有PO=PC;
(2)如圖②,若直線AB與OC不平行,則在過點(diǎn)A的直線y=-x+4上是否存在點(diǎn)P,
使∠OPC=90°,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P在直線y=kx+4上移動(dòng)時(shí),只存在一個(gè)點(diǎn)P使得∠OPC=90°,試求出此時(shí)y=kx+4中k的值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若直線AB∥ED,你能推得∠ABC,∠BCD,∠CDE之間的數(shù)量關(guān)系嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若直線AB分別平分∠COD和∠EOF.
(1)寫出圖中三對(duì)相等的角;
(2)若∠AOE=125°,∠DOB=152°,求∠BOF和∠COE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案