【題目】 問題:如圖1,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,AC=,BC=2,求CD的長.

1)發(fā)現(xiàn):張強(qiáng)同學(xué)解決這個(gè)問題的思路是:將BCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°AED處,點(diǎn)B,C分別落在點(diǎn)AE處(如圖2),易證點(diǎn)C,AE在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得到了AC,BCCD三條線段之間的關(guān)系為:AC+BC=CD,從而求出CD的長是______ ;

2)應(yīng)用:如圖3AB是⊙O的直徑,點(diǎn)CD在⊙O上,且,若AB=5,BC=4,求CD的長;

3)拓展:如圖4,∠ACB=90°,AC=BC=2,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足CE=CA,點(diǎn)QAE的中點(diǎn),直接寫出線段PQ的長是______

【答案】(1)3;(2)CD=;(3)

【解析】

1)代入結(jié)論:AC+BC=CD,直接計(jì)算即可;

2)如圖,根據(jù)直徑所對的圓周角是直角得:∠ADB=∠ACB=90°,由弧相等可知所對的弦相等,得到滿足圖1的條件,所以AC+BC=CD,代入可得CD的長;

3)根據(jù)題意可知,可求出AQ長,則利用(1)的結(jié)論進(jìn)行解答.

解:(1)由題意知:AC+BC=CD,

+2=CD

∴CD=3;

故答案為:3

2)如圖1,連接ACBD、AD,

∵AB⊙O的直徑,

∴∠ADB=∠ACB=90°,

∴AD=BD,

∵AB=5,BC=4

由勾股定理得:AC==3,

∵AC+BC=CD,

即:3+4=CD,

∴CD=;

3)如圖2

∵AC=BC,∠ACB=90°

點(diǎn)PAB的中點(diǎn),

∴AP=CP,∠APC=90°

∵CA=CE,點(diǎn)QAE的中點(diǎn),

∴∠CQA=90°

∵AC=BC=2,

∵AE=

∴AE=1,

∴AQ=,

由勾股定理可求得:CQ=,

由(1)的結(jié)論可知:AQ+CQ=PQ,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】振華書店準(zhǔn)備購進(jìn)甲、乙兩種圖書進(jìn)行銷售,若購進(jìn)本甲種圖書和本乙種圖書共需元,若購進(jìn)本甲種圖書和本乙種圖書共需.

求甲、乙兩種圖書每本進(jìn)價(jià)各多少元;

該書店購進(jìn)甲、乙兩種圖書共本進(jìn)行銷售,且每本甲種圖書的售價(jià)為元,每本乙種圖書的售價(jià)為元,如果使本次購進(jìn)圖書全部售出后所得利潤不低于元,那么該書店至少需要購進(jìn)乙種圖書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對稱點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上一點(diǎn),∠CAB30°,D是直徑AB上一動點(diǎn),連接CD并過點(diǎn)DCD的垂線,與圓O的其中一個(gè)交點(diǎn)記為點(diǎn)E(點(diǎn)E位于直線CD上方或左側(cè)),連接EC.已知AB6cm,設(shè)A、D兩點(diǎn)間的距離為xcmC、D兩點(diǎn)間的距離為y1cm,E、C兩點(diǎn)間的距離為y2cm,小雪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小雪的探究過程:

x/cm

0

1

2

3

4

5

6

y1/cm

5.2

4.4

3.6

3.0

2.7

2.7

   

y2/cm

5.2

4.6

4.2

   

4.8

5.6

6.0

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、面圖、測量,分別得到了y1y2x的幾組對應(yīng)值,請將表格補(bǔ)充完整:(保留一位小數(shù))

2)在同一平面直角坐標(biāo)系xOy中,y2的圖象如圖所示,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)∠ECD60°時(shí),AD的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在8×8的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的內(nèi)接格點(diǎn)三角形,設(shè)對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果ABC是該拋物線的內(nèi)接格點(diǎn)三角形,且AB=3,點(diǎn)A,BC的橫坐標(biāo)xA,xB,xC滿足xAxCxB,那么符合上述條件的拋物線的條數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場統(tǒng)計(jì)了每個(gè)營業(yè)員在某月的銷售額,繪制了如下統(tǒng)計(jì)圖.

解答下列問題:

1)設(shè)營業(yè)員的月銷售額為x(單位:萬元).商場規(guī)定:當(dāng)x15時(shí)為不稱職,當(dāng)15≤x20時(shí)為基本稱職,當(dāng)20≤x25時(shí)為稱職,當(dāng)x≥25時(shí)為優(yōu)秀.試求出基本稱職、稱職兩個(gè)層次營業(yè)員人數(shù)所占百分比,并補(bǔ)全扇形圖;

2)根據(jù)(1)中規(guī)定,所有稱職和優(yōu)秀的營業(yè)員月銷售額的中位數(shù)為   ,眾數(shù)為   ;

3)為了調(diào)動營業(yè)員的積極性,商場制定月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的受到獎(jiǎng)勵(lì).如果要使稱職和優(yōu)秀的營業(yè)員半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元?簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′AD于點(diǎn)G

   

1)求證:BG=DG

2)求C′G的長;

3)如圖2,再折疊一次,使點(diǎn)DA重合,折痕ENADM,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點(diǎn)C,連結(jié)BCAD于點(diǎn)E,若DE3,BC8,則⊙O的半徑長為(

A.B.5C.D.

查看答案和解析>>

同步練習(xí)冊答案