【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
【答案】(1).證明見解析;(2)菱形ACBP的面積=.
【解析】
試題分析:(1)連接AO,BO,根據(jù)PA、PB是⊙O的切線,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的內(nèi)角和得到∠AOP=60°,根據(jù)三角形外角的性質(zhì)得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到結(jié)論;(2)連接AB交PC于D,根據(jù)菱形的性質(zhì)得到AD⊥PC,解直角三角形即可得到結(jié)論.
試題解析:
(1)連接AO,BO,
∵PA、PB是⊙O的切線,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,
∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,
∴∠ACO=∠APO,∴AC=AP,
同理BC=PB,∴AC=BC=BP=AP,∴四邊形ACBP是菱形;
(2)連接AB交PC于D,
∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,
∴PD=,∴PC=3,AB=,
∴菱形ACBP的面積=ABPC=.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解本校九年級學生足球訓(xùn)練情況,隨機抽查該年級若干名學生進行測試,然后把測試結(jié)果分為4個等級:A、B、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息解答下列問題
(1)補全條形統(tǒng)計圖
(2)該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數(shù)為__________人;
(3)在此次測試中,有甲、乙、丙、丁四個班的學生表現(xiàn)突出,現(xiàn)決定從這四個班中隨機選取兩個班在全校舉行一場足球友誼賽.請用畫樹狀圖或列表的方法,求恰好選到甲、乙兩個班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是定理的是( )
A.內(nèi)錯角相等
B.同位角相等,兩直線平行
C.一個角的余角不等于它本身
D.在同一平面內(nèi),有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中.對于平面內(nèi)任一點(m,n),規(guī)定以下兩種變換:
①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于( 。
A. (3,2) B. (3.﹣2) C. (﹣3,2) D. (﹣3,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為2的正方形ABCD中,P是對角線AC上的一個動點(點P與A、C不重合),連接BP,將BP繞點B順時針旋轉(zhuǎn)90°到BQ,連接QP,QP與BC交于點E,QP延長線與AD(或AD延長線)交于點F.
(1)連接CQ,證明:CQ=AP;
(2)設(shè)AP=x,CE=y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并求當x為何值時,CE=BC;
(3)猜想PF與EQ的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從新華網(wǎng)獲悉:商務(wù)部5月27日發(fā)布的數(shù)據(jù)顯示,一季度,中國與“一帶一路”沿線國家在經(jīng)貿(mào)合作領(lǐng)域保持良好發(fā)展勢頭,雙邊貨物貿(mào)易總額超過16553億元人民幣,16553億用科學記數(shù)法表示為( )
A.1.6553×108
B.1.6553×1011
C.1.6553×1012
D.1.6553×1013
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com