如圖(1),矩形ABCD的一邊BC在直接坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m>0.
(1)求點(diǎn)E、F的坐標(biāo)(用含的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖(2),設(shè)拋物線y=a(x-m-6)2+h經(jīng)過A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值.
分析:(1)根據(jù)四邊形ABCD是矩形以及由折疊對稱性得出AF=AD=10,EF=DE,進(jìn)而求出BF的長,即可得出E,F(xiàn)點(diǎn)的坐標(biāo); (2)分三種情況討論:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可; (3)由E(m+10,3),A(m,8),代入二次函數(shù)解析式得出M點(diǎn)的坐標(biāo),再利用△AOB∽△AMG,求出m的值即可. 解答:解:(1)∵四邊形ABCD是矩形, ∴AD=CB=10,AB=DC=8,∠D=∠DCB=∠ABC=90°, 由折疊對稱性:AF=AD=10,EF=DE, 在Rt△ABF中,BF===6, ∴CF=4, 設(shè)EF=x,則EC=8-x, 在Rt△ECF中,42+(8-x)2=x2, 解得:x=5, ∴CE=3, ∵B(m,0), ∴E(m+10,3),F(xiàn)(m+6,0); (2)分三種情況討論: 若AO=AF, ∵AB⊥OF, ∴BO=BF=6,, ∴m=6, 若OF=FA,則m+6=10, 解得:m=4, 若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64, ∴(m+6)2=m2+64, 解得:m=, ∴m=6或4或; (3)由(1)知:E(m+10,3),A(m,8). ∴, 得, ∴M(m+6,-1), 設(shè)對稱軸交AD于G, ∴G(m+6,8), ∴AG=6,GM=8-(-1)=9, ∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°, ∴∠OAB=∠MAG, ∵∠ABO=∠MGA=90°, ∴△AOB∽△AMG, ∴=, 即:=, ∴m=12, 點(diǎn)評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及相似三角形的判定與性質(zhì),二次函數(shù)的綜合應(yīng)用是初中階段的重點(diǎn)題型特別注意利用數(shù)形結(jié)合以及分類討論思想是這部分考查的重點(diǎn)也是難點(diǎn)同學(xué)們應(yīng)重點(diǎn)掌握. |
考點(diǎn):二次函數(shù)綜合題. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
45 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:百分學(xué)生作業(yè)本 課時3練1測 數(shù)學(xué) 七年級下冊 題型:022
如圖,已知矩形AB-CD沿著AE折疊使D點(diǎn)落在BC邊上的F點(diǎn)處,如果∠BAF=60°,則∠DAE等于
A.15°
B.30°
C.45°
D.60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com