【題目】在平行四邊形中,對(duì)角線、交于點(diǎn),,,點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為;同時(shí),點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接,過點(diǎn)作,設(shè)運(yùn)動(dòng)時(shí)間為,
解答下列問題:
(1)當(dāng)為何值時(shí)是等腰三角形?
(2)設(shè)五邊形面積為,試確定與的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說明理由;
(4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻使得平分,若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1)或或 (2) (3)存在; (4)存在;
【解析】
(1)分三種情況:,,分類討論即可;
(2)過點(diǎn)作于點(diǎn),先求出的面積,再求出四邊形的面積,把兩個(gè)面積相加即可;
(3)過點(diǎn)作于點(diǎn),求出,再求出的面積,由第二問我們可以知道五邊形面積表達(dá)式,根據(jù)列出方程即可得出答案;
(4)過點(diǎn)作于點(diǎn),平分,利用,得出,設(shè),則,利用,得出的表達(dá)式,在中,利用勾股定理列出方程,求出,進(jìn)而求出,從而得出答案.
解:∵,,,
∴,
∴都是直角三角形,
∴,
∵四邊形是平行四邊形,
∴,
(1)當(dāng),
由題意知道:,∴,即;
當(dāng)時(shí),過點(diǎn)作于點(diǎn),則,
∵,,
∴,
∴,即:,
解得:;
當(dāng)時(shí),過點(diǎn)作于點(diǎn),則,
∵,
∴,即,
解得:;
綜上所述:當(dāng)、或時(shí),是等腰三角形;
(2)過點(diǎn)作于點(diǎn),
∵,,
∴,
∴,即,
∴,
∵,
∴
∴,
∴,
在中,,
,
∴,
∴;
(3)存在;
理由如下:
過點(diǎn)作于點(diǎn),
∴,
∴,
∴,
∵,
∴,
整理得:
解得:,
∵不能為負(fù)數(shù),
∴舍去,
∴,
∴當(dāng)時(shí),;
(4)存在;
理由如下:
過點(diǎn)作于點(diǎn),
∵平分,
∴,
又∵,
∴,
∴,
設(shè),則,
∵,,
∴,
∴,即,
∴,
在中,由勾股定理得:
,即,
整理得:,
解得:,(舍去),
∵不能為負(fù)數(shù),∴舍去,
∴,
∴,
∴當(dāng)時(shí),平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣趨于嚴(yán)重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)完成下列表格,并直接寫出月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式及售價(jià)x的取值范圍;
售價(jià)(元/臺(tái)) | 月銷售量(臺(tái)) |
400 | 200 |
250 | |
x |
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)將向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的;直接寫出的坐標(biāo);
(2)將繞原點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到直接寫出的坐標(biāo);
(3)在軸上存在一點(diǎn),滿足點(diǎn)到與點(diǎn)距離之和最小,請(qǐng)直接寫出點(diǎn)的坐標(biāo)(學(xué)生可以在練習(xí)本上畫圖,答題卡上直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,對(duì)角線與相交于點(diǎn),過點(diǎn)作,過點(diǎn)作,兩線相交于點(diǎn);
(1)求證:;
(2)連接,交于點(diǎn),若于點(diǎn),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某斜拉橋引申出的部分平面圖,AE,CD是兩條拉索,其中拉索CD與水平橋面BE的夾角為72°,其底端與立柱AB底端的距離BD為4米,兩條拉索頂端距離AC為2米,若要使拉索AE與水平橋面的夾角為35°,請(qǐng)計(jì)算拉索AE的長(zhǎng).(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的解析式為,是拋物線上的一個(gè)動(dòng)點(diǎn),是拋物線對(duì)稱軸上的一點(diǎn).
(1)求拋物線的頂點(diǎn)及與軸交點(diǎn)的坐標(biāo);
(2)是過點(diǎn)且平行于軸的直線,與拋物線的對(duì)稱軸的交點(diǎn)為,,垂足為點(diǎn),連接,.
①當(dāng)是等邊三角形時(shí),求點(diǎn)的坐標(biāo);
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P按A→B→C→M的順序在邊長(zhǎng)為l的正方形邊上運(yùn)動(dòng),M是CD邊上中點(diǎn),設(shè)點(diǎn)P經(jīng)過的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖像是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解2012年全國(guó)中學(xué)生創(chuàng)新能力大賽中競(jìng)賽項(xiàng)目“知識(shí)產(chǎn)權(quán)”筆試情況,隨機(jī)抽查了部分參賽同學(xué)的成績(jī),整理并制作圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.1 |
70≤x<80 | 90 | n |
80≤x<90 | m | 0.4 |
90≤x≤100 | 60 | 0.2 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:
(1)本次調(diào)查的樣本容量為 ;
(2)在表中:m= .n= ;
(3)補(bǔ)全頻數(shù)分布直方圖:
(4)參加比賽的小聰說,他的比賽成績(jī)是所有抽查同學(xué)成績(jī)的中位數(shù),據(jù)此推斷他的成績(jī)落在 分?jǐn)?shù)段內(nèi);
(5)如果比賽成績(jī)80分以上(含80分)為優(yōu)秀,那么你估計(jì)該競(jìng)賽項(xiàng)目的優(yōu)秀率大約是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com