【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.
(1)請(qǐng)用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
【答案】(1)E( ,4),F(xiàn)(6,);(2)y=
【解析】
試題分析:(1)易得E點(diǎn)的縱坐標(biāo)為4,F(xiàn)點(diǎn)的橫坐標(biāo)為6,把它們分別代入反比例函數(shù)y=(k>0)即可得到E點(diǎn)和F點(diǎn)的坐標(biāo);
(2)分別用矩形面積和能用圖中的點(diǎn)表示出的三角形的面積表示出所求的面積,解方程即可求得k的值.
解:(1)E( ,4),F(xiàn)(6,);
(2)∵E,F(xiàn)兩點(diǎn)坐標(biāo)分別為E( ,4),F(xiàn)(6,),
∴S△ECF=E×CF=(6﹣k)(4﹣k),
∴S△EOF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△ECF
=24﹣k﹣k﹣S△ECF
=24﹣k﹣(6﹣k)(4﹣k),
∵△OEF的面積為9,
∴24﹣k﹣(6﹣k)(4﹣k)=9,
整理得,=6,
解得k=12.
∴反比例函數(shù)的解析式為y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形,、分別平分四邊形的外角和,設(shè),.
(1)如圖1,若,求的度數(shù);
(2)如圖1,若與相交于點(diǎn),,請(qǐng)寫(xiě)出、所滿足的等量關(guān)系式;
(3)如圖2,若,判斷、的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)分別寫(xiě)出△ABC各個(gè)頂點(diǎn)的坐標(biāo);
(2)判斷△ABC的形狀;
(3)請(qǐng)?jiān)趫D中畫(huà)出△ABC關(guān)于y軸對(duì)稱的圖形△A'B'C'.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)過(guò)幾秒,使△PBQ的面積等于8cm2?
(2)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.
(3)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問(wèn)幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過(guò)點(diǎn)D作AC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE.
(1)證明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)都是1.
(1)按要求作圖: △ABC關(guān)于軸對(duì)稱的圖形△;
(2)將點(diǎn)先向上平移個(gè)單位,再向右平移個(gè)單位得到點(diǎn)的坐標(biāo)為 ;
(3)△的面積為 ;
(4)若為軸上一點(diǎn),連接 ,則△周長(zhǎng)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:等腰三角形OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A的坐標(biāo)為(-3,3),點(diǎn)B的坐標(biāo)為(﹣6,0).
(1)若三角形OAB關(guān)于y軸的軸對(duì)稱圖形是三角形OA′B′,請(qǐng)直接寫(xiě)出A、B的對(duì)稱點(diǎn)A′、B′的坐標(biāo);
(2)若將三角形OAB沿x軸向右平移a個(gè)單位,此時(shí)點(diǎn)A恰好落在反比例函數(shù)y=的圖象上,求a的值;
(3)若三角形OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)α度(0<α<90).
①當(dāng)α=30°時(shí)點(diǎn)B恰好落在反比例函數(shù)y=的圖象上,求k的值;
②問(wèn)點(diǎn)A、B能否同時(shí)落在①中的反比例函數(shù)的圖象上,若能,求出α的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一出租車(chē)一天下午以鼓樓為出發(fā)地在東西方向運(yùn)營(yíng),向東走為正,向西走為負(fù),行車(chē)?yán)锍蹋▎挝唬憨N)依先后次序記錄如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.
⑴將最后一名乘客送到目的地,出租車(chē)離鼓樓出發(fā)點(diǎn)多遠(yuǎn)?在鼓樓的什么方向?
⑵若每千米的價(jià)格為2.4元,司機(jī)一個(gè)下午的營(yíng)業(yè)額是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com