【題目】已知反比例函數y= (k≠0)的圖象經過(3,﹣1),則當1<y<3時,自變量x的取值范圍是 .
【答案】﹣3<x<﹣1
【解析】解:∵反比例函數y= (k≠0)的圖象經過(3,﹣1),
∴k=3×(﹣1)=﹣3,
∴反比例函數的解析式為y= .∵反比例函數y= 中k=﹣3,
∴該反比例函數的圖象經過第二、四象限,且在每個象限內均單增.
當y=1時,x= =﹣3;當y=3時,x= =﹣1.
∴1<y<3時,自變量x的取值范圍是﹣3<x<﹣1.
所以答案是:﹣3<x<﹣1.
【考點精析】解答此題的關鍵在于理解反比例函數的性質的相關知識,掌握性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=x2+2x﹣3的圖象如圖所示,點A(x1 , y1),B(x2 , y2)是該二次函數圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結論正確的是( )
A.y1<y2
B.y1>y2
C.y的最小值是﹣3
D.y的最小值是﹣4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是AC和BC中點.
(1)若點C恰好是AB的中點,則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內部任一點C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數與射線OC的位置無關.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,點D,F分別是AC,AB的中點,CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.
(1)如圖1,當點E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD內接于⊙O,如圖所示,在劣弧 上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個多面體的表面展開圖,每個面上都標注了字母(字母在多面體的外表面),請根據要求回答問題.
(1)如果D面在多面體的左面,那么F面在哪里?
(2)B面和哪一面是相對的面?
(3)如果C面在前面,從上面看到的是D面,那么從左面能看到哪一面?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線BD上有一點C,則:
(1)∠1和∠ABC是直線AB,CE被直線_____所截得的____角;
(2)∠2和∠BAC是直線CE,AB被直線____所截得的_____角;
(3)∠3和∠ABC是直線_____、_____被直線_____所截得的____角;
(4)∠ABC和∠ACD是直線____、_____被直線_____所截得的角;
(5)∠ABC和∠BCE是直線_____、______被直線所截得的_____角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的材料,解答后面給出的問題:
兩個含有二次根式的代數式相乘,如果它們的積不含有二次根式,我們就說這兩個代數式互為有理化因式,例如與,+1與-1.
(1)請你再寫出兩個含有二次根式的代數式,使它們互為有理化因式:__________________;
這樣,化簡一個分母含有二次根式的式子時,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.
(2)請仿照上面給出的方法化簡:;
(3)計算:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com