【題目】如圖,在等腰直角中,,D是線段上一點(diǎn)(),連接,過點(diǎn)C的垂線,交的延長線于點(diǎn)E,交的延長線于點(diǎn)F.

1)依題意補(bǔ)全圖形;

2)若,求的大小(用含的式子表示);

3)若點(diǎn)G在線段上,,連接.

①判斷的位置關(guān)系并證明;

②用等式表示之間的數(shù)量關(guān)系.

【答案】1)補(bǔ)全圖形,如圖見解析;(2;(3)①DGBC的位置關(guān)系: DGBC. 見解析;②2CG2=DG2+AB2.

【解析】

根據(jù)題意畫出圖形解答即可;
根據(jù)等腰直角三角形的性質(zhì)進(jìn)行解答即可;
根據(jù)全等三角形的判定和性質(zhì)以及垂直的判定解答即可;如圖:構(gòu)造等腰RtBPDPD2=2BD2.利用三角形全等證明△PGD為直角三角形,PG=AB即可得到結(jié)論.

解:補(bǔ)全圖形,如圖所示:


,,
,
,
,
BD的延長線于點(diǎn)E
,
,
,
;
BC的位置關(guān)系:
證明如下:
連接BGAC于點(diǎn)M,延長GDBC于點(diǎn)H,如圖2,


,,,


,
,,
,
,
,
,

②如圖:作等腰RtBPD,連接PGPD,

由①得BGAC,∠PBD=90°,

∴∠ADB+DBM=90°,∠DBM+GBP=90°,

∴∠ADB=GBP

在△ADBGBP中,

,

∴△ADBGBPSAS),

AB=PG,∠PGB=DAB=45°,

由①得,

∴∠PGB+MGD=90°,即△PGD為直角三角形,

PD2+DG2=PD2

PD2=2BD2,BD=CG

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:2A型車和1B型車載滿貨物一次可運(yùn)貨11噸;用1A型車和2B型車載滿貨物一次可運(yùn)貨13.根據(jù)以上信息, 解答下列問題:

(1)1A型車和lB型車都載滿貨物一次可分別運(yùn)貨多少噸?

(2)某物流公司現(xiàn)有31噸貨物,計(jì)劃同時租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都載滿貨物請用含有的式子表示,并幫該物流公司設(shè)計(jì)租車方案;

(3)(2)的條件下,若A型車每輛需租金500/次,B型車每輛需租金600/.請選出最省錢的租車方案,并求出最少租車費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.

(1)求證:AB=BE;

(2)若PA=2,cosB=,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣2)2﹣4與y軸交于點(diǎn)A,頂點(diǎn)為B,點(diǎn)A的坐標(biāo)為(0,﹣2),點(diǎn)C在拋物線上(不與點(diǎn)A,B重合),過點(diǎn)C作y軸的垂線交拋物線于點(diǎn)D,連結(jié)AC,AD,CD,設(shè)點(diǎn)C的橫坐標(biāo)為m.

(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.

(2)用含m的代數(shù)式表示線段CD的長.

(3)點(diǎn)E是拋物線對稱軸上一點(diǎn),且點(diǎn)E的縱坐標(biāo)比點(diǎn)C的縱坐標(biāo)小1,連結(jié)BD,DE,設(shè)ACD的面積為S1,BDE的面積為S2,且S1S20,求S2=S1時m的值.

(4)將拋物線y=a(x﹣2)2﹣4沿x=2平移,得到拋物線y=a(x﹣2)2+k,過點(diǎn)C作y軸平行線與拋物線y=a(x﹣2)2+k交于點(diǎn)F,若CD與y軸交于點(diǎn)G,且CD=6,直接寫出使AC=FG的點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長AEBC的延長線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)D、E分別是邊ABAC的中點(diǎn),點(diǎn)FBC邊上,連接DEDF、EF,則添加下列哪一個條件后,仍無法判斷△FCE△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°AC=BC,斜邊AB=4OAB的中點(diǎn),以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF, 經(jīng)過點(diǎn)C,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB30°,點(diǎn)P在∠AOB的內(nèi)部,P1P關(guān)于OA對稱,P2P關(guān)于OB對稱,則△P1OP2

A. 30°角的直角三角形 B. 頂角是30的等腰三角形

C. 等邊三角形 D. 等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案