【題目】在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當(dāng)EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當(dāng)EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】
(1)證明:如圖①,作∠GAH=∠EAB交GE于點(diǎn)H.
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
,
∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等邊三角形.
∴AG=HG.
∴EG=AG+BG;
(2)EG= AG﹣BG.
如圖②,作∠GAH=∠EAB交GE于點(diǎn)H.
∴∠GAB=∠HAE.
∵∠EGB=∠EAB=90°,
∴∠ABG+∠AEG=∠AEG+∠AEH=180°.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=90°,
∴△AGH是等腰直角三角形.
∴ AG=HG.
∴EG= AG﹣BG.
【解析】(1)首先作∠GAH=∠EAB交GE于點(diǎn)H,易證得△ABG≌△AEH,又由∠EAB=60°,可證得△AGH是等邊三角形,繼而證得結(jié)論;(2)首先作∠GAH=∠EAB交GE于點(diǎn)H,易證得△ABG≌△AEH,繼而可得△AGH是等腰直角三角形,則可求得答案.
【考點(diǎn)精析】利用平行四邊形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國很多城市水資源缺乏,為了加強(qiáng)居民的節(jié)水意識,某市制定了每月用水4噸以內(nèi)(包括4噸)和用水4噸以上兩種收費(fèi)標(biāo)準(zhǔn)(收費(fèi)標(biāo)準(zhǔn):每噸水的價格),某用戶每月應(yīng)交水費(fèi)y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.
(1)分別求出當(dāng)0≤x≤4、x>4時函數(shù)的解析式;
(2)當(dāng)0≤x≤4、x>4時,每噸水的價格分別是多少?
(3)若某用戶該月交水費(fèi)12.8元,求該戶用了多少噸水.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期我們學(xué)習(xí)了“有理數(shù)乘方”運(yùn)算,知道乘方的結(jié)果叫做“冪”,下面介紹一種有關(guān)“冪”的新運(yùn)算.
定義:am 與 an(a≠0,m、n 都是正整數(shù))叫做同底數(shù)冪,同底數(shù)冪除法記作 am÷an .
運(yùn)算法則如下:am÷an=
根據(jù)“同底數(shù)冪除法”的運(yùn)算法則,回答下列問題:
(1)填空: = ,43÷45= .
(2)如果 3x-1÷33x-4=,求出 x 的值.
(3)如果(x﹣1)2x+2÷(x﹣1)x+6=1,請直接寫出 x 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點(diǎn)C逆時針旋轉(zhuǎn)90°得到矩形A′B′CD′,點(diǎn)E、F分別是BD、B′D′的中點(diǎn),則EF的長度為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一艘船的點(diǎn)A處觀測海岸上高為41m的燈塔BC(觀測點(diǎn)A與燈塔底部C在一個水平面上),測得燈塔頂部B的仰角為35°,則觀測點(diǎn)A到燈塔BC的距離為 . (精確到1m)
【參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是矩形ABCD的邊BC、CD的中點(diǎn),連接AC、AF、EF,若AF⊥EF,AC=,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)比較大小;
①|(zhì)﹣2|+|3| |﹣2+3|;
②|4|+|3| |4+3|;
③|﹣|+|﹣| |﹣+(﹣)|;
④|﹣5|+|0| |﹣5+0|.
(2)通過(1)中的大小比較,猜想并歸納出|a|+|b|與|a+b|的大小關(guān)系,并說明a,b滿足什么關(guān)系時,|a|+|b|=|a+b|成立?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com