如圖,以為圓心的兩個(gè)同心圓中,大圓的弦與小圓相切于點(diǎn),若大圓半徑為,小圓半徑為,則弦的長為_______
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中每個(gè)小正方形的邊長均為1,△ABC的頂點(diǎn)均在小正方形的頂點(diǎn)處.

(1)以點(diǎn)A為旋轉(zhuǎn)中心,把△ABC順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△
(2)在(1)的條件下,求點(diǎn)C運(yùn)動到點(diǎn)所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,且AC=CD,∠ACD=120°.

(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P是⊙O外一點(diǎn),PA⊥PB,弦BC//OP,求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,且D在以AE為直徑的⊙O上.

(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

翻轉(zhuǎn)類的計(jì)算問題在全國各地的中考試卷中出現(xiàn)的頻率很大,因此初三(5)班聰慧的小菲同學(xué)結(jié)合2011年蘇州市數(shù)學(xué)中考卷的倒數(shù)第二題對這類問題進(jìn)行了專門的研究。你能和小菲一起解決下列各問題嗎?(以下各問只要求寫出必要的計(jì)算過程和簡潔的文字說明即可。)
(1)如圖①,小菲同學(xué)把一個(gè)邊長為1的正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片向右翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O所經(jīng)過的路程;并求頂點(diǎn)O所經(jīng)過的路線;

圖①
(2)小菲進(jìn)行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片向右翻轉(zhuǎn)若干次.她提出了如下問題:

圖②
問題①:若正方形紙片OABC接上述方法翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過的路程是。
(3)①小菲又進(jìn)行了進(jìn)一步的拓展研究,若把這個(gè)正三角形的一邊OA與這個(gè)正方形的一邊OA重合(如圖3),然后讓這個(gè)正三角形在正方形上翻轉(zhuǎn),直到正三角形第一次回到初始位置(即OAB的相對位置和初始時(shí)一樣),求頂點(diǎn)O所經(jīng)過的總路程。

圖③
②若把邊長為1的正方形OABC放在邊長為1的正五邊形OABCD上翻轉(zhuǎn)(如圖④),直到正方形第一次回到初始位置,求頂點(diǎn)O所經(jīng)過的總路程。

圖④
(4)規(guī)律總結(jié),邊長相等的兩個(gè)正多邊形,其中一個(gè)在另一個(gè)上翻轉(zhuǎn),當(dāng)翻轉(zhuǎn)后第一次回到初始位置時(shí),該正多邊形翻轉(zhuǎn)的次數(shù)一定是兩正多邊形邊數(shù)的___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O內(nèi)有折線OABC,點(diǎn)B、C在圓上,點(diǎn)A在⊙O內(nèi),其中OA=4cm,BC=10cm,∠A=∠B=60°,則AB的長為( 。

A.5cm        B.6cm         C.7cm    D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑分別為1 cm,2 cm,3 cm的三圓兩兩外切,則以這三個(gè)圓的圓心為頂點(diǎn)的三角形的形狀為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,點(diǎn)C,D是圓上兩點(diǎn),∠AOC=100°,則∠D=_______.

查看答案和解析>>

同步練習(xí)冊答案