【題目】如圖,在等腰ABC中,,FAB邊上的中點(diǎn),點(diǎn)D、E分別在ACBC邊上運(yùn)動(dòng),且保持,連接DEDF、EF在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:(1)是等腰直角三角形;四邊形CDFE不可能為正方形,(3長度的最小值為4;(4)連接CF,CF恰好把四邊形CDFE的面積分成12兩部分,則其中正確的結(jié)論個(gè)數(shù)是

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】A

【解析】

連接CF,證明△ADF≌△CEF,根據(jù)全等三角形的性質(zhì)判斷①,根據(jù)正方形的判定定理判斷②,根據(jù)勾股定理判斷③,根據(jù)面積判斷④.

連接CF,

∵△ABC是等腰直角三角形,

∴∠FCB=A= ,CF=AF=FB;

AD=CE,

∴△ADF≌△CEF(SAS);

EF=DF,∠CFE=AFD;

∵∠AFD+CFD=90

∴∠CFE+CFD=EFD=90,

又∵EF=DF

∴△EDF是等腰直角三角形((1)正確).

當(dāng)D. E分別為ACBC中點(diǎn)時(shí),四邊形CDFE是正方形((2)錯(cuò)誤).

由于△DEF是等腰直角三角形,因此當(dāng)DE最小時(shí),DF也最;

即當(dāng)DFAC時(shí),DE最小,此時(shí) .

((3)錯(cuò)誤).

∵△ADF≌△CEF,

SCEF=SADF

S四邊形CDFE=SAFC,

CF恰好把四邊形CDFE的面積分成12兩部分

SCEFSCDF=1:2 SCEFSCDF=2:1

SADFSCDF=1:2 SADFSCDF=2:1

當(dāng)SADFSCDF=1:2時(shí),SADF=SACF=

又∵SADF=

2AD=

AD=((4)錯(cuò)誤).

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)OBD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩動(dòng)點(diǎn)分別從正方形 ABCD 的頂點(diǎn) A、C 同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行.若甲的速度是乙的速度的 3 倍,則它們第 2018 次相遇在邊( )上.

A. CDB. ADC. ABD. BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)現(xiàn)有一個(gè)六面分別標(biāo)有數(shù)字12,3,4,56且質(zhì)地均勻的正方形骰子,另有三張正面分別標(biāo)有數(shù)字1,2,3的卡片(卡片除數(shù)字外,其他都相同),先由小明投骰子一次,記下骰子向上一面出現(xiàn)的數(shù)字,然后由小王從三張背面朝上放置在桌面上的卡片中隨機(jī)抽取一張,記下卡片上的數(shù)字.

1)請用列表或畫樹形圖(樹狀圖)的方法,求出骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積為6的概率;

2)小明和小王做游戲,約定游戲規(guī)則如下:若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積大于7,則小明贏;若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積小于7,則小王贏,問小明和小王誰贏的可能性更大?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,已知點(diǎn)Am0),Bn,0),且mn滿足(m+12+0,將線段AB向右平移1個(gè)單位長度,再向上平移2個(gè)單位長度,得到線段CD,其中點(diǎn)C與點(diǎn)A對應(yīng),點(diǎn)D與點(diǎn)B對應(yīng),連接ACBD

1)求點(diǎn)A、BC、D的坐標(biāo);

2)在x軸上是否存在點(diǎn)P,使三角形PBC的面積等于平行四邊形ABDC的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

3)如圖(2),點(diǎn)Ey軸的負(fù)半軸上,且∠BAE=∠DCB.求證:AEBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)在精準(zhǔn)扶貧活動(dòng)中銷售一農(nóng)產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷售量y(萬件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤z(元)與月份x(月)的關(guān)系如下表:

x

1

2

3

4

5

6

7

8

9

10

11

12

z

19

18

17

16

15

14

13

12

11

10

10

10

(1)請你根據(jù)表格求出每件產(chǎn)品利潤z(元)與月份x(月)的關(guān)系式;

(2)若月利潤w(萬元)=當(dāng)月銷售量y(萬件)×當(dāng)月每件產(chǎn)品的利潤z(元),求月利潤w(萬元)與月份x(月)的關(guān)系式;

(3)當(dāng)x為何值時(shí),月利潤w有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C在一次函數(shù)的圖象上,它們的橫坐標(biāo)依次為1,2,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是(  )

A. 1 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFG≌△NMH, FM是對應(yīng)角.

1)寫出相等的線段與相等的角;

2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MNHG的長度.

查看答案和解析>>

同步練習(xí)冊答案