【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS)
(2)解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
【解析】(1)由四邊形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通過角的計算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可證出△ABF≌△CBE;(2)根據(jù)△EBF是等腰直角三角形可得出∠BFE=∠FEB,通過角的計算可得出∠AFB=135°,再根據(jù)全等三角形的性質(zhì)可得出∠CEB=∠AFB=135°,通過角的計算即可得出∠CEF=90°,從而得出△CEF是直角三角形.本題考查了正方形的性質(zhì).全等三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)以及角的計算,解題的關(guān)鍵是:(1)根據(jù)判定定理SAS證明△ABF≌△CBE;(2)通過角的計算得出∠CEF=90°.本題屬于中檔題,難度不大,解決該題型題目時,通過正方形和等腰三角形的性質(zhì)找出相等的邊,再通過角的計算找出相等的角,以此來證明兩三角形全等是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BO、CO分別平分∠ABC和∠ACB.計算:
(1)若∠A=60°,求∠BOC的度數(shù);
(2)若∠A=100°,則∠BOC的度數(shù)是多少?
(3)若∠A=120°,則∠BOC的度數(shù)又是多少?
(4)由(1)、(2)、(3),你發(fā)現(xiàn)了什么規(guī)律?請用一個等式將這個規(guī)律表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市2017年女子迷你馬拉松比賽在南濱路舉行,王老師和劉老師參加了比賽,圖中AB、OC分別表示王老師和劉老師前往終點所跑的路程S(km)隨時間t(min)變化的函數(shù)圖象,以下說法:①這是全長為5km的比賽;②王老師比劉老師早15分鐘到達終點;③王老師出發(fā)15分鐘時遇到劉老師;④王老師的平均速度為500米/分鐘.其中正確的有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點E,∠ABC、∠BCD的角平分線交于點F.
(1)若∠F=70°,則∠ABC+∠BCD= ______ °;∠E= ______ °;
(2)探索∠E與∠F有怎樣的數(shù)量關(guān)系,并說明理由;
(3)給四邊形ABCD添加一個條件,使得∠E=∠F,所添加的條件為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,AD=AE,BE、CE相交于點F,則圖中全等三角形共有( )對.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當(dāng)點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點A,交y軸于點C,過A,C兩點的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點B.
(1)求二次函數(shù)的表達式;
(2)連接BC,點N是線段BC上的動點,作ND⊥x軸交二次函數(shù)的圖象于點D,求線段ND長度的最大值;
(3)若點H為二次函數(shù)y=ax2+4x+c圖象的頂點,點M(4,m)是該二次函數(shù)圖象上一點,在x軸、y軸上分別找點F,E,使四邊形HEFM的周長最小,求出點F,E的坐標(biāo).
溫馨提示:在直角坐標(biāo)系中,若點P,Q的坐標(biāo)分別為P(x1 , y1),Q(x2 , y2),
當(dāng)PQ平行x軸時,線段PQ的長度可由公式PQ=|x1﹣x2|求出;
當(dāng)PQ平行y軸時,線段PQ的長度可由公式PQ=|y1﹣y2|求出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.
(1)求證:四邊形EFGH是平行四邊形;
(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時,已知 =2,且菱形ABCD的面積是20,求矩形EFGH的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二()班的全體同學(xué)在體測當(dāng)天沿著同一條路勻速從名校聯(lián)中班級教室出發(fā)到重慶一中本部操場參加體育測試,行進到本部綜合樓時班主任老師發(fā)現(xiàn)未帶相關(guān)體測器材,立即派小趙同學(xué)原路勻速跑回本班教室取器材(取器材時間為分鐘),然后馬上又以原速的去追趕班級隊伍.當(dāng)途中再次經(jīng)過綜合樓時,小趙發(fā)現(xiàn)班級隊伍在自己前面不遠處,于是他又以之前的速度追趕班級隊伍,結(jié)果仍然比班級隊伍晚分鐘到達本部操場.如圖所示,設(shè)小趙與本部操場之間距離為(),小趙所用時間為(),則當(dāng)小趙途中再次經(jīng)過綜合樓時,班級隊伍(隊伍長度忽略不計)離本部操場的距離是______米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com