(1)如圖1,已知正方形ABCD,E是AD上一點(diǎn),F(xiàn)是BC上一點(diǎn),G是AB上一點(diǎn),H是CD上一點(diǎn),線段EF、GH交于點(diǎn)O,∠EOH=∠C,求證:EF=GH;
(2)如圖2,若將“正方形ABCD”改為“菱形ABCD”,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;
(3)如圖3,若將“正方形ABCD”改為“矩形ABCD”,且AD=mAB,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;
精英家教網(wǎng)
附加題:根據(jù)前面的探究,你能否將本題推廣到一般的平行四邊形情況?若能,寫(xiě)出推廣命題,畫(huà)出圖形,并證明,若不能,說(shuō)明理由.
分析:(1)可通過(guò)構(gòu)建全等三角形來(lái)求解.分別過(guò)G、F作GN∥AD,F(xiàn)M∥CD,那么FM=GN,∠EMF=∠GNH=90°,而∠OGN和∠OFM都是等角的余角,因此三角形EFM和HGN全等,那么可通過(guò)全等三角形EFM和HGN來(lái)得出GH=EF.
(2)(3)(4)方法同(1)都是分別過(guò)G、F作AD、CD的垂線,根據(jù)∠GOF=∠A,來(lái)得出三角形HGN和EFM中的∠HGN和∠EFM相等,然后再得出全等或相似.
解答:精英家教網(wǎng)
證明:(1)如圖1,過(guò)點(diǎn)F作FM⊥AD于M,過(guò)點(diǎn)G作GN⊥CD于N,
則FM=GN=AD=BC,且GN⊥FM,設(shè)它們的垂足為Q,設(shè)EF、GN交于R
∵∠GOF=∠A=90°,
∴∠OGR=90°-∠GRO=90°-∠QRF=∠OFM.
∵∠GNH=∠FME=90°,F(xiàn)M=GN,
∴△GNH≌△FME.
∴EF=GH.

(2)如圖2,過(guò)點(diǎn)F作FM⊥AD于M,過(guò)點(diǎn)G作GN⊥CD于N,設(shè)EF、GN交于R、GN、MF交于Q,
在四邊形MQND中,∠QMD=∠QND=90°
∴∠ADC+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠A=∠C,AB=BC,
∴FM=AB•sinA=BC•sinC=GN.
∵∠FEM=∠GNH=90°,
∴△GNH≌△FME.
∴EF=GH.

(3)如圖3,過(guò)點(diǎn)F作FM⊥AD于M,過(guò)點(diǎn)G作GN⊥CD于N,設(shè)EF、GN交于R、GN、MF交于Q,
∵∠GOF=∠A=90°,
∴∠OGR=90-∠GRO=90-∠QRF=∠OFM.
∵∠GNH=∠FME=90°,
∴△GNH∽△FME.
GH
EF
=
GN
FM
=m


附加題:
已知平行四邊形ABCD,E是AD上一點(diǎn),F(xiàn)是BC上一點(diǎn),G是AB上一點(diǎn),H是CD上一點(diǎn),線段EF、GH交于點(diǎn)O,∠EOH=∠C,AD=mAB,則GH=mEF.
證明:如圖,過(guò)點(diǎn)F作FM⊥AD于M,過(guò)點(diǎn)G作GN⊥CD于N,設(shè)EF、GN交于R、GN、MF交于Q,
在四邊形MQND中,∠QMD=∠QND=90°,精英家教網(wǎng)
∴∠MDN+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠FME=∠GNH=90°,
∴△GNH∽△FME.
GH
EF
=
GN
FM
=m

即GH=mEF.
點(diǎn)評(píng):本題主要考查了全等三角形和相似三角形的判定,構(gòu)建出相關(guān)的三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,圖2,圖3,在△ABC中,分別以AB,AC為邊,向△ABC外作正三角形,正四邊形,正五邊形,BE,CD相交于點(diǎn)O.
①如圖1,求證:△ABE≌△ADC;
②探究:如圖1,∠BOC=
 
;
如圖2,∠BOC=
 
;
如圖3,∠BOC=
 
;
(2)如圖4,已知:AB,AD是以AB為邊向△ABC外所作正n邊形的一組鄰邊;AC,AE是以AC為邊向△ABC外所作正n邊形的一組鄰邊,BE,CD的延長(zhǎng)相交于點(diǎn)O.
①猜想:如圖4,∠BOC=360÷n(用含n的式子表示);
②根據(jù)圖4證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線C1:y=a(x-1)2+4與直線C2:y=x+b相交于點(diǎn)A(3,精英家教網(wǎng)0)和點(diǎn)B.
(1)求a、b的值;
(2)若P(t,y1),Q(2,y2)是拋物線C1上的兩點(diǎn),且y1<y2,求實(shí)數(shù)t的取值范圍;
(3)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n) 落在圖1中拋物線C1與直線C2圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•資陽(yáng))在一次機(jī)器人測(cè)試中,要求機(jī)器人從A出發(fā)到達(dá)B處.如圖1,已知點(diǎn)A在O的正西方600cm處,B在O的正北方300cm處,且機(jī)器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(1)分別求機(jī)器人沿A→O→B路線和沿A→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(2)若∠OCB=45°,求機(jī)器人沿A→C→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說(shuō)明:從A出發(fā)到達(dá)B處,機(jī)器人沿A→P→B路線行進(jìn)所用時(shí)間最短.
(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三角板的直角頂點(diǎn)與點(diǎn)C重合,它的兩條直角邊也分別與x軸正半軸、y軸正半軸相交于E點(diǎn)、D點(diǎn).當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸垂直時(shí),如圖1,已知射線OM為第一象限的角平分線,C點(diǎn)的坐標(biāo)為(2,2)
(1)四邊形ODCE的面積是
4
4
;點(diǎn)D的坐標(biāo)為
(0,2)
(0,2)
;點(diǎn)E的坐標(biāo)為
(2,0)
(2,0)

(2)將三角板繞點(diǎn)C旋轉(zhuǎn)到與x軸、y軸不垂直時(shí),如圖2,在旋轉(zhuǎn)過(guò)程中,四邊形ODCE的面積始終保持不變,其值為定值.請(qǐng)你說(shuō)明其中的道理.
(3)經(jīng)過(guò)D、O、E三點(diǎn)畫(huà)⊙O1,如圖3,設(shè)△DOE的內(nèi)切圓的直徑為d,請(qǐng)證明:不論⊙O1的大小、位置如何變化,d+DE的值不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知直線y=-
1
2
x+m與反比例函數(shù)y=
k
x
的圖象在第一象限內(nèi)交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),分別與x、y軸交于點(diǎn)C、D,AE⊥x軸于E.
(1)若OE•CE=12,求k的值.
(2)如圖2,作BF⊥y軸于F,求證:EF∥CD.
(3)在(1)(2)的條件下,EF=
5
,AB=2
5
,P是x軸正半軸上的一點(diǎn),且△PAB是以P為直角頂點(diǎn)的等腰直角三角形,求P點(diǎn)的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案