如圖,在平行四邊形ABCD中,O是其對角線AC的中點,EF過點O.
(1)求證:∠OEA=∠OFC;
(2)求證:BE=DF.

證明:(1)∵四邊形ABCD 是平行四邊形,
∴CD=AB,CD∥AB,
∴∠DCA=∠BAC,
∵OA=OC,
∴△COF≌△AOE,
∴∠OEA=∠OFC.

(2)由(1)知:△COF≌△AOE,CD=AB,
∴AE=CF,
∴BE=DF.
分析:(1)由?ABCD得到CD=AB,CD∥AB,推出△COF和△AOE全等,即可推出結論;
(2)由(1)得到AB=CD,AE=CF,相減即可得到答案.
點評:本題主要考查了平行四邊形的性質,全等三角形的性質和判定等知識點,解此題的關鍵是證明△COF和△AOE全等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案