【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
科目:初中數學 來源: 題型:
【題目】隨著移動互聯網的快速發(fā)展,基于互聯網的共享單車應運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的位居民,得到這位居民一周內使用共享單車的次數分別為:,,,,,,,,,.
(1)這組數據的中位數是________,眾數是________;
(2)計算這位居民一周內使用共享單車的平均次數;
(3)若該小區(qū)有名居民,試估計該小區(qū)居民一周內使用共享單車的總次數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,由求根公式x1,2=可推出x1+x2=﹣,x1x2=,我們把這個命題叫做韋達定理.設α,β是方程x2﹣5x+3=0的兩根,請根據韋達定理求下列各式的值:
(1)α+β= ,αβ= ;
(2);
(3)2α2﹣3αβ+10β.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AC∥BD,請先作圖再解決問題.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)
①作BE平分∠ABD交AC于點E;
②在BA的延長線上截取AF=BA,連接EF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國古代數學的許多發(fā)現都曾位居世界前列,如楊輝三角就是一例.如圖,這個三角形的構造法則:兩腰上的數都是1,其余每個數均為其上方左右兩數之和,它給出了(a+b)n(n為正整數)的展開式(按a的次數降冪排列)的系數規(guī)律例如,在三角形中第一行的三個數1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數;第四行的四個數1,3,3,1,恰好對應著(a+b)3=a3+3ab+3ab2+b3展開式中的系數.結合對楊輝三角的理解完成以下問題
(1)(a+b)2展開式a2+2ab+b2中每一項的次數都是 次;
(a+b)3展開式a3+3a2b+3ab2+b3中每一項的次數都是 次;
那么(a+b)n展開式中每一項的次數都是 次.
(2)寫出(a+1)4的展開式 .
(3)拓展應用:計算(x+1)5+(x﹣1)6+(x+1)7的結果中,x5項的系數為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果關于x的方程x2-ax+a2-3=0至少有一個正根,則實數a的取值范圍是( 。
A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在每個小正方形的邊長為1的網格圖形中,每個小正方形的頂點稱為格點,從一個格點移動到與之相距的另一個格點的運動稱為一次跳馬變換,例如,在4×4的正方形網格圖形中(如圖1),從點A經過一次跳馬變換可以到達點B,C,D,E等處.現有10×10的正方形網格圖形(如圖2),則從該正方形的頂點M經過跳馬變換到達與其相對的頂點N,最少需要跳馬變換的次數是( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長方體敞口玻璃罐,長、寬、高分別為16 cm、6 cm和6 cm,在罐內點E處有一小塊餅干碎末,此時一只螞蟻正好在罐外壁,在長方形ABCD中心的正上方2 cm處,則螞蟻到達餅干的最短距離是多少cm.( )
A. 7B.
C. 24D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com