【題目】點(diǎn)C在直線AB上,AC=10cm,CB=8cm,點(diǎn)M、N分別是AC、BC的中點(diǎn),則線段MN的長(zhǎng)為______.
【答案】9cm或1cm
【解析】
分類討論:點(diǎn)C在線段AB上,點(diǎn)C在線段AB的延長(zhǎng)線上,根據(jù)線段中點(diǎn)的性質(zhì),可得MC、NC的長(zhǎng),根據(jù)線段的和差,可得答案.
解:當(dāng)點(diǎn)C在線段AB上時(shí),由點(diǎn)M、N分別是AC、BC的中點(diǎn),得
MC=AC=×10=5cm,CN=BC=×8=4cm.
由線段的和差,得MN=MC+CN=5+4=9cm;
當(dāng)點(diǎn)C在線段AB的延長(zhǎng)線上時(shí),由點(diǎn)M、N分別是AC、BC的中點(diǎn),得
MC=AC=×10=5cm,CN=BC=×8=4cm.
由線段的和差,得MN=MC-CN=5-4=1cm;
故答案為:9cm,1cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點(diǎn)F,E為四邊形ABCD外一點(diǎn),且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,△ABD和△ACE分別是以AB、AC為斜邊的等腰直角三角形,BE、CD相交于點(diǎn)F.求證:AF⊥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有三張卡片,分別標(biāo)有數(shù)字1,2,3,這些卡片除數(shù)字不同外其余均相同.小吉從盒子中隨機(jī)抽取一張卡片記下數(shù)字后放回,洗勻后再隨機(jī)抽取一張卡片.用畫樹狀圖或列表的方法,求兩次抽取的卡片上數(shù)字之和為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的運(yùn)算程序中,若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測(cè)得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求證:GF⊥OC;
(2)求EF的長(zhǎng)(結(jié)果精確到0.1m).
(參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com