【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線(xiàn)DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).

【答案】
(1)

證明:連結(jié)OD,∵DE是⊙O的切線(xiàn),

∴∠ODE=90°,

∴∠ADE+∠BDO=90°,

∵∠ACB=90°,

∴∠A+∠B=90°,

又∵OD=OB,

∴∠B=∠BDO,

∴∠ADE=∠A.


(2)

解:連結(jié)CD,∵∠ADE=∠A,

∴AE=DE,

∵BC是⊙O的直徑,∠ACB=90°.

∴EC是⊙O的切線(xiàn),∴DE=EC,

∴AE=EC.

又∵DE=10,

∴AC=2DE=20,

在Rt△ADC中,DC= .

設(shè)BD=x,

在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2-202,

∴x2+122=(x+16)2-202,解得x=9,

∴BC= .


【解析】(1)連結(jié)OD,根據(jù)切線(xiàn)的性質(zhì)和同圓的半徑相等,及圓周角所對(duì)的圓周角為90°,得到相對(duì)應(yīng)的角的關(guān)系,即可證明;(2)由(1)中的∠ADE=∠A可得AE=DE;由∠ACB=90°,可得EC是⊙O的切線(xiàn),由切線(xiàn)長(zhǎng)定理易得DE=EC,則AC=2DE,由勾股定理求出CD;設(shè)BD=x,再可由勾股定理BC2= x2+122=(x+16)2-202,可解出x的值,再重新代入原方程,即可求出BC.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線(xiàn)的性質(zhì)定理(切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用表示不大于的最大整數(shù),例如:,;用表示大于的最小整數(shù),例如:,,.解決下列問(wèn)題:

1= ,,= ;

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知,滿(mǎn)足方程組,求,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)分別為a,b的兩個(gè)正方形并排放在一起,請(qǐng)計(jì)算圖中陰影部分面積,并求出當(dāng)a+b=16,ab=60時(shí)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別為3和4,那么點(diǎn)P到矩形的兩條對(duì)角線(xiàn)AC和BD的距離之和是( )

A.
B.
C.
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】喜歡探究的亮亮同學(xué)拿出形狀分別是長(zhǎng)方形和正方形的兩塊紙片,其中長(zhǎng)方形紙片的長(zhǎng)為,寬為,且兩塊紙片面積相等.

1)亮亮想知道正方形紙片的邊長(zhǎng),請(qǐng)你幫他求出正方形紙片的邊長(zhǎng);(結(jié)果保留根號(hào))

2)在長(zhǎng)方形紙片上截出兩個(gè)完整的正方形紙片,面積分別為,亮亮認(rèn)為兩個(gè)正方形紙片的面積之和小于長(zhǎng)方形紙片的總面積,所以一定能截出符合要求的正方形紙片來(lái),你同意亮亮的見(jiàn)解嗎?為什么?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2),B﹣3,﹣2

1)若點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱(chēng),則點(diǎn)C的坐標(biāo)為   ;

2)將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)D,則點(diǎn)D的坐標(biāo)為   ;

3)由點(diǎn)A,BC,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個(gè)橫、縱坐標(biāo)均為整數(shù)的點(diǎn),求所取的點(diǎn)橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

我們知道,兩條平行線(xiàn)被第三條直線(xiàn)所截,同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ),所以在某些探究性問(wèn)題中通過(guò)構(gòu)造平行線(xiàn)可以起到轉(zhuǎn)化的作用.

已知三角板中,,長(zhǎng)方形中,

問(wèn)題初探:

1)如圖(1),若將三角板的頂點(diǎn)放在長(zhǎng)方形的邊上,相交于點(diǎn),于點(diǎn),求的度數(shù).

過(guò)點(diǎn),則有,從而得,從而可以求得的度數(shù).

由分析得,請(qǐng)你直接寫(xiě)出:的度數(shù)為____________的度數(shù)為___________

類(lèi)比再探:

2)若將三角板按圖(2)所示方式擺放(不垂直),請(qǐng)你猜想寫(xiě)出的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( )
A. =±5
B. =﹣3
C.± =±6
D. =﹣10

查看答案和解析>>

同步練習(xí)冊(cè)答案