【題目】如圖,在平面直角坐標(biāo)系中,A(p,0),B(0,q),且p、q滿足(p﹣2)2+=0.
(1)求直線AB的解析式;
(2)若點(diǎn)M為直線y=mx上一點(diǎn),且△ABM是以AB為底的等腰直角三角形,求m值.
【答案】(1)y=﹣2x+4;(2)m=1.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)可求得p、q,可求得A、B坐標(biāo),利用待定系數(shù)法可求得直線AB的解析式;
(2)根據(jù)A、B坐標(biāo),可求出AB及AB中點(diǎn)的C坐標(biāo),設(shè)M坐標(biāo)為(x,mx),則MC=AB,且M點(diǎn)在線段AB的垂直平分線上,可求得垂直平分線的方程,則可求得M的值.
解:(1)根據(jù)題意可得:p﹣2=0,解得 p=2,
根據(jù)題意可得:q﹣4=0 解得:q=4,
設(shè)直線AB的解析式為y=kx+4( k≠0)
將A(2,0)代入得
2k+4=0
k=﹣2
∴AB的解析式為y=﹣2x+4;
(2)過(guò)M點(diǎn)作MH⊥y軸于H,過(guò)M點(diǎn)作MN⊥x軸于N
∴∠BHM=∠MNA=90°
∵∠BON=90°
∴∠HMN=90°
∴∠HMA+∠AMN=90°
∵△ABM是以AB為底的等腰直角三角形
∴MB=MA,∠BMA=90°
∴∠HMA+∠BMH=90°
∴∠AMN=∠BMH
∴△BHM≌△AMN
∴MH=MN,
設(shè)M的坐標(biāo)為(x,y)
則x=y
∴mx=x
∴m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校組織全校1200名學(xué)生進(jìn)行經(jīng)典詩(shī)詞誦讀活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩(shī)詞大賽,為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取40名學(xué)生調(diào)查“一周詩(shī)詞誦背數(shù)量”,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示.
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩(shī)詞誦背數(shù)量”,繪制成統(tǒng)計(jì)表如下:
一周詩(shī)詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 1 | 3 | 5 | 6 | 10 | 15 |
請(qǐng)根據(jù)調(diào)查的信息
(1)求活動(dòng)啟動(dòng)之初學(xué)生“一周詩(shī)詞誦背數(shù)量”的中位數(shù);
(2)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩(shī)詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,至少?gòu)膬蓚(gè)不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評(píng)價(jià)該校經(jīng)典詩(shī)詞誦背系列活動(dòng)的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進(jìn)而求出等邊△ABC的邊長(zhǎng)為_(kāi)_________;
問(wèn)題得到解決.
請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.
(1)請(qǐng)直接寫(xiě)出點(diǎn)、兩點(diǎn)的坐標(biāo)::___________;:___________;
(2)若把向上平移3個(gè)單位,再向右平移2個(gè)單位得,請(qǐng)?jiān)谏蠄D中畫(huà)出,并寫(xiě)出點(diǎn)的坐標(biāo)___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著氣溫的升高,空調(diào)的需求量大增.某家電超市對(duì)每臺(tái)進(jìn)價(jià)分別為2000元、1700元的、兩種型號(hào)的空調(diào),近兩周的銷(xiāo)售情況統(tǒng)計(jì)如下:
銷(xiāo)售時(shí)段 | 銷(xiāo)售量 | 銷(xiāo)售收入 | |
型號(hào) | 型號(hào) | ||
第一周 | 6臺(tái) | 7臺(tái) | 31000元 |
第二周 | 8臺(tái) | 11臺(tái) | 45000元 |
(1)求、兩種型號(hào)的空調(diào)的銷(xiāo)售價(jià);
(2)若該家電超市準(zhǔn)備用不多于54000元的資金,采購(gòu)這兩種型號(hào)的空調(diào)30臺(tái),求種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,該家電超市售完這30臺(tái)空調(diào)能否實(shí)現(xiàn)利潤(rùn)不低于15800元的目標(biāo)?若能,請(qǐng)給出采購(gòu)方案.若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠ABC的平分線交AC于點(diǎn)D,在AB的延長(zhǎng)線上截取BE,使BE=CD,連接DE交BC于點(diǎn)F.
(1)如圖1,當(dāng)∠CAB=60°時(shí),若AB=2,求DE的長(zhǎng)度;
(2)如圖2,當(dāng)∠CAB≠60°時(shí),求證:BE=2BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”.小明是這樣思考的:由函數(shù)y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
(1)請(qǐng)參考小明的方法寫(xiě)出函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與y=x2﹣3nx+n互為“旋轉(zhuǎn)函數(shù)”,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上任一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)CE的長(zhǎng)為_____時(shí),△CEB′恰好為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡(jiǎn),再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com