27、下崗職工王阿姨利用自己的-技之長開辦了“愛心服裝廠”,計劃生產(chǎn)甲、乙兩種型號的服裝共40套投放到市場銷售.已知甲型服裝每套成本34元,售價39元;乙型服裝每套成本42元,售價50元.服裝廠預(yù)計兩種服裝的成本不低于1536元,不高于1552元.
(1)問服裝廠有哪幾種生產(chǎn)方案?
(2)該服裝廠怎樣生產(chǎn)獲得利潤最大?
(3)在(1)的條件下,40套服裝全部售出后,服裝廠又生產(chǎn)6套服裝捐贈給某社區(qū)低保戶,這樣服裝廠僅獲利潤25元錢.請直接寫出服裝廠是按哪種方案生產(chǎn)的.
分析:(1)設(shè)生產(chǎn)甲種服裝x套,可根據(jù)服裝總套數(shù)表示出乙的套數(shù)為(40-x)套.根據(jù)題意列出不等式組,根據(jù)問題的實際意義推出整數(shù)值;
(2)根據(jù)“利潤=售價-成本”列出一次函數(shù)的解析式解答;
(3)根據(jù)(1)中方案設(shè)計計算.
解答:解:(1)設(shè)甲型服裝x套,則乙型服裝為(40-x)套,
由題意得1536≤34x+42(40-x)≤1552,
解得16≤x≤18,
∵x是正整數(shù),
∴x=16或17或18.
有以下生產(chǎn)三種方案:
①生產(chǎn)甲型服裝16套,乙型24套;
②甲型服裝17套,乙型23套;
③甲型服裝18套,乙型服裝22套.

(2)設(shè)所獲利潤為y元,由題意有:
y=(39-34)x+(50-42)(40-x)=-3x+320,
∵y隨x的增大而減小,
∴x=16時,
∴y最大值=272,
∴最大利潤272元.

(3)因為利潤與甲型服裝套數(shù)之間的關(guān)系為:y=-3x+320.
當生產(chǎn)甲型服裝16套、乙型30套時,利潤=272-6×42=20,
當生產(chǎn)甲型服裝17套、乙型29套時,利潤=269-(34+5×42)=25,
當生產(chǎn)甲型服裝18套、乙型28套時,利潤=266-(2×34+4×42)=30,
服裝廠采用的方案是:生產(chǎn)甲型服裝17套,乙型服裝28套.
點評:(1)利用一次函數(shù)求最值,主要應(yīng)用一次函數(shù)的性質(zhì);
(2)用一次函數(shù)解決實際問題是近年中考中的熱點問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、下崗職工王阿姨利用自己的-技之長開辦了“愛心服裝廠”,計劃生產(chǎn)甲、乙兩種型號的服裝共40套投放到市場銷售.已知甲型服裝每套成本34元,售價39元;乙型服裝每套成本42元,售價50元.服裝廠預(yù)計兩種服裝的成本不低于1536元,不高于1552元.
(1)問服裝廠有哪幾種生產(chǎn)方案?
(2)按照(1)中方案生產(chǎn),服裝全部售出至少可獲得利潤多少元?
(3)在(1)的條件下,服裝廠又拿出6套服裝捐贈給某社區(qū)低保戶,其余34套全部售出,這樣服裝廠可獲得利潤27元.請直接寫出服裝廠這40套服裝是按哪種方案生產(chǎn)的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、下崗職工王阿姨利用自己的一技之長開辦了“愛心服裝廠”,計劃生產(chǎn)甲、乙兩種型號的服裝共40套投放到市場銷售.已知甲型服裝每套成本34元,售價39元;乙型服裝每套成本42元,售價50元.服裝廠預(yù)計兩種服裝的成本不低于1536元,不高于1552元.
(1)問服裝廠有哪幾種生產(chǎn)方案?
(2)在(1)的條件下,服裝廠又拿出6套服裝捐贈給某社區(qū)低保戶,其余34套全部售出,這樣服裝廠可獲得利潤27元.請直接寫出服裝廠這40套服裝是按哪種方案生產(chǎn)的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下崗職工王阿姨利用自己的一技之長開辦了“愛心服裝廠”,計劃生產(chǎn)甲、乙兩種型號的服裝共40套投放到市場銷售,已知甲型服裝每套成本34元,售價39元;乙型服裝每套成本42元,售價50元,服裝廠預(yù)計兩種服裝的成本不低于1536元,不高于1552元.
(1)服裝廠有哪幾種生產(chǎn)方案?
(2)按照(1)中的生產(chǎn)方案,服裝全部售出至少可獲得利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下崗職工王阿姨利用自己的一技之長開辦了“愛心服裝廠”,計劃生產(chǎn)甲、乙、丙三種型號的服裝共40套投放到市場銷售.已知甲型服裝每套成本380元,售價460元;乙型服裝每套成本400元,售價500元.丙型服裝每套成本360元,售價450元;服裝廠預(yù)計三種服裝的成本為15120元,且每種服裝至少生產(chǎn)6套,設(shè)生產(chǎn)甲種服裝x套,乙種服裝y套.
(1)用含x,y的式子表示生產(chǎn)丙種型號的服裝套數(shù);
(2)求出y與x之間的函數(shù)關(guān)系式;
(3)求服裝廠有幾種生產(chǎn)方案?
(4)按照(3)中方案生產(chǎn),服裝全部售出最多可獲得利潤多少元?

查看答案和解析>>

同步練習(xí)冊答案