在平行四邊形ABCD中,點E為AD的中點,連接BE,交AC于點F,則S△AEF:S△BCF的值是( )

A.
B.
C.
D.
【答案】分析:根據(jù)四邊形ABCD是平行四邊,求證△AEF∽△BCF,然后利用其對應邊成比例即可求得AF:BC=1:2,再根據(jù)兩三角形相似面積比等于相似比的平方即可求出問題答案.
解答:解:∵四邊形ABCD是平行四邊,
∴AD=BC,
∵點E為AD的中點,
∴AE=DE,
∴AE:BC=AE:AD=1:2,
∵AD∥BC,
∴△AEF∽△BCF,
∴S△AEF:S△BCF=AE2:BC2=1:4,
故選C.
點評:此題主要考查學生對相似三角形的判定與性質(zhì),平行四邊形的性質(zhì)等知識點,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F.試判斷AF與CE是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點E是AD的中點,點O是AB邊上一點,且AO=AE,過點E作直線HF交DC于點H,交BA的延長線于F,以OE所在直線為對稱軸,△FEO經(jīng)軸對稱變換后得到△F′EO,直線EF′交直線DC于點M.
(1)求證:AD∥OF′;
(2)若M點在點H右側(cè),OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點E,CF⊥BC交BD于點F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長是
48
48

查看答案和解析>>

同步練習冊答案