已知某商品的進(jìn)價為每件40元,售價是每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格 ,每漲價一元,每星期要少賣出10件。該商品應(yīng)定價為多少元時,商場能獲得最大利潤?
科目:初中數(shù)學(xué) 來源: 題型:解答題
某賓館有30個房間供游客住宿,當(dāng)每個房間的房價為每天120元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(11分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0)、B(4,5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,□ABCD中,對角線BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線AD的同側(cè),點F與點D重合,GF與AD在同一直線上.△EFG從點D出發(fā)以每秒1個單位的速度沿射線DA方向平移,當(dāng)點G到點A時停止運(yùn)動;同時點P也從點A出發(fā),以每秒3個單位的速度沿折線AD→DC方向運(yùn)動,到達(dá)點C時停止運(yùn)動,設(shè)運(yùn)動的時間為t.
(1)求的長度;
(2)在平移的過程中,記與相互重疊的面積為,請直接寫出面積與運(yùn)動時間的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)如圖2,在運(yùn)動的過程中,若線段與線段交于點,連接.是否存在這樣的時間,使得為等腰三角形?若存在,求出對應(yīng)的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟(jì),全面實現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術(shù)革新,節(jié)能減排,經(jīng)分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關(guān)系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤也有所提高,且相應(yīng)獲得的利潤p(萬元)與月份x(月)的函數(shù)關(guān)系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎(chǔ)上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤在上一個月的基礎(chǔ)上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在菱形ABCD中,對角線AC、BD相交于點O,AC=8,BD=6.現(xiàn)有兩動點P、Q分別從A、C兩點同時出發(fā),點P以每秒1個單位長的速度由點A向點D做勻速運(yùn)動,點Q沿折線CB—BA向點A做勻速運(yùn)動.
(1)點P將要運(yùn)行路徑AD的長度為 ;點Q將要運(yùn)行的路徑折線CB—BA的長度為 .
(2)當(dāng)點Q在BA邊上運(yùn)動時,若點Q的速度為每秒2個單位長,設(shè)運(yùn)動時間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時,S有最大值,最大值是多少?
(3)如圖2,若點Q的速度為每秒a個單位長(a≤),當(dāng)t =4秒時:
①此時點Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設(shè)P點橫坐標(biāo)為t,線段PQ的長為d,求出d與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)點P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2-2x+c的頂點A在直線l:y=x-5上.
(1)求拋物線頂點A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點B,與x軸交于點C、D(C點在D點的左側(cè)),試判斷△ABD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過點A(-3,0)和點B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個二次函數(shù)的圖像向右平移5個單位后的頂點設(shè)為C,直線BC與x軸相交于點D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關(guān)系,并且說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com