(本題滿(mǎn)分8分)
如圖,E、F分別是平行四邊形ABCD對(duì)角線(xiàn)BD所在直線(xiàn)上兩點(diǎn),BE=DF,請(qǐng)你以F為一個(gè)端點(diǎn),和圖中己標(biāo)明字母的某一點(diǎn)連成一條新的線(xiàn)段,猜想并證明它和圖中已有的某一條線(xiàn)段相等(只需研究一組線(xiàn)段相等即可)
(1)連結(jié)_________
(2)猜想:_________
(3)證明:
解:(1)CF……………………………………………………………………2分
(2)CF=AE………………………………………………………………4分
(3)證明:∵四邊形ABCD為平行四邊形
∴AB=CD,AB//CD,(平行四邊形的對(duì)邊平行且相等)…………5分
則∠ABD=∠BDC……………………………………………6分
又BE=DF
∴△ABE≌△CDF(SAS)…………………………………………7分
∴CF=AE(全等三角形的對(duì)應(yīng)邊相等) ……………………………8分
或證明△ADE≌△CBF或連接AC,證明AC、EF互相平分,進(jìn)而得出四邊形CFAE為平行四邊形等.
說(shuō)明:其他方法參照以上給定的證明合理賦分.
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.(本題滿(mǎn)分5分)如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點(diǎn)A重合,右端與點(diǎn)B重合.
1.若將木棒沿?cái)?shù)軸向右水平移動(dòng),則當(dāng)它的左端移動(dòng)到B點(diǎn)時(shí),它的右端在數(shù)軸上所對(duì)應(yīng)的數(shù)為20;若將木棒沿?cái)?shù)軸向左水平移動(dòng),則當(dāng)它的右端移動(dòng)到A點(diǎn)時(shí),則它的左端在數(shù)軸上所對(duì)應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長(zhǎng)為 cm.
2.由題(1)的啟發(fā),請(qǐng)你借助“數(shù)軸”這個(gè)工具幫助小紅解決下列問(wèn)題:
問(wèn)題:一天,小紅去問(wèn)曾當(dāng)過(guò)數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說(shuō):“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請(qǐng)求出爺爺現(xiàn)在多少歲了?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分10分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),每個(gè)小方格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.在第一象限內(nèi)有橫、縱坐標(biāo)均為整數(shù)的A、B兩點(diǎn),且OA= OB=.
(1)寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)畫(huà)出線(xiàn)段AB繞點(diǎn)O旋轉(zhuǎn)一周所形成的圖形,并求其面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分6分)
如圖,在中,點(diǎn)是的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com