【題目】已知拋物線y=x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是( , ),對(duì)稱軸是 ;
(2)如圖1,已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過(guò)點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)如圖,在第二問(wèn)的基礎(chǔ)上,在拋物線上有一點(diǎn)C(x,y),連接AC、OC、BC、PC,當(dāng)△OAC的面積等于△BCP的面積時(shí),求C的橫坐標(biāo).
【答案】(1)頂點(diǎn)坐標(biāo)是(0,1),對(duì)稱軸是y軸(或x=O)(2)(2,4)(3)
【解析】分析:
(1)由二次函數(shù)的圖象和性質(zhì)進(jìn)行解答即可;
(2)由△PAB是等邊三角形,PB⊥x軸易得∠ABO=30°,結(jié)合∠AOB=90°,AO=2可得AB=4,OB= ,由此可得點(diǎn)P的坐標(biāo)為;
(3)如下圖2所示,設(shè)點(diǎn)C的坐標(biāo)為(x,y),則S△AOC=AO·x,S△BCP=PB·(),由S△AOC=S△BCP列出方程,解方程即可求得點(diǎn)C的坐標(biāo).
詳解:
(1)∵ 拋物線的頂點(diǎn)坐標(biāo)為(0,k),對(duì)稱軸為y軸,
∴拋物線的頂點(diǎn)坐標(biāo)是(0,1),對(duì)稱軸是y軸(或x=0);
(2)∵△PAB是等邊三角形,PB⊥x軸于點(diǎn)B,
∴∠APB=60°,∠OBP=90°,
∴∠ABO=90°﹣60°=30°.
∴AB=2OA=4.
∴PB=4,
∴P(2,4),
∵在中,當(dāng)時(shí),,
∴點(diǎn)P(2,4)在拋物線上,
∴符合要求的點(diǎn)P的坐標(biāo)為(2,4);
(3)下圖2所示,設(shè)點(diǎn)C的坐標(biāo)為(x,y),則S△AOC=AO·x,S△BCP=PB·(),
∵S△AOC=S△BCP,OA=2,PB=4,
∴ ,
解得: ,
∴C的橫坐標(biāo)是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的部分?jǐn)?shù)據(jù)如下:
銷售單價(jià)x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬(wàn)件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(2)求出每月的利潤(rùn)z(萬(wàn)元)與銷售單x(元)之間的函數(shù)關(guān)系式.
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤(rùn)率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過(guò)900萬(wàn)元.那么并求出當(dāng)銷售單價(jià)定為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)﹣制造成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,CD是中線,,一個(gè)以點(diǎn)D為頂點(diǎn)的角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F,DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N.
如圖1,若,求證:;
如圖2,在繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中:
探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說(shuō)明理由;
若,,求DN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格x(元/個(gè)) 的變化如下表:同時(shí),銷售過(guò)程中的其他開(kāi)支(不含進(jìn)價(jià))總計(jì)40萬(wàn)元.
銷售價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬(wàn)個(gè)) | … | 5 | 4 | 3 | 2 | … |
(1)觀察并分析表中的數(shù)據(jù),用所學(xué)過(guò)的函數(shù)知識(shí),直接寫出y與 x的函數(shù)解析式;
(2)求出該公司銷售這種計(jì)算器的凈得利潤(rùn)z(萬(wàn)元)與銷售價(jià)格 x(元/個(gè)) 的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤(rùn)最大,最大值是多少?
(3)該公司要求凈得利潤(rùn)不能低于40萬(wàn)元,請(qǐng)你結(jié)合函數(shù)圖象求出銷售價(jià)格 x(元/個(gè)) 的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校5千米的圖書館看書,途中小凡從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開(kāi)學(xué)校的路程s(千米)與時(shí)間t(分鐘)的關(guān)系,請(qǐng)根據(jù)圖象提供的信息回答問(wèn)題:
(1)l1和l2哪一條是描述小凡的運(yùn)動(dòng)過(guò)程,說(shuō)說(shuō)你的理由;
(2)小凡和小光誰(shuí)先出發(fā),先出發(fā)了多少分鐘?
(3)小凡與小光誰(shuí)先到達(dá)圖書館,先到了多少分鐘?
(4)小凡與小光從學(xué)校到圖書館的平均速度各是多少千米/小時(shí)?(不包括中間停留的時(shí)間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)等腰直角三角形如圖放置,∠B=∠CAD=90°,AB=BC=cm,AC=AD,垂直于CD的直線a從點(diǎn)C出發(fā),以每秒cm的速度沿CD方向勻速平移,與CD交于點(diǎn)E,與折線BAD交于點(diǎn)F;與此同時(shí),點(diǎn)G從點(diǎn)D出發(fā),以每秒1cm的速度沿著DA的方向運(yùn)動(dòng);當(dāng)點(diǎn)G落在直線a上,點(diǎn)G與直線a同時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)填空:CD=_______cm;
(2)連接EG、FG,設(shè)△EFG的面積為y,求y與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)是否存在某一時(shí)刻t(0<t<2),作∠ADC的平分線DM交EF于點(diǎn)M,是否存在點(diǎn)M是EF的中點(diǎn)?若存在,求此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DE和BG,猜想線段DE與BG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫出結(jié)論,不必說(shuō)出理由)
(深入探究):(2)如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請(qǐng)根據(jù)圖2加以說(shuō)明.
(拓展應(yīng)用):(3)如圖3,直線l上有兩個(gè)動(dòng)點(diǎn)A、B,直線l外有一點(diǎn)動(dòng)點(diǎn)Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動(dòng)點(diǎn)A、B的移動(dòng),線段QD的長(zhǎng)也會(huì)發(fā)生變化,若QA,QB長(zhǎng)分別為3,6保持不變,在變化過(guò)程中,線段QD的長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是一個(gè)直角,作射線,再分別作和的平分線,.
(1)如圖①,當(dāng)時(shí),求的度數(shù);
(2)如圖②,當(dāng)射線在內(nèi)繞點(diǎn)旋轉(zhuǎn)時(shí),始終是與的平分線.則的大小是否發(fā)生變化,說(shuō)明理由;
(3)當(dāng)射線在外繞點(diǎn)旋轉(zhuǎn)且為鈍角時(shí),仍始終是與的平分線,直接寫出的度數(shù)(不必寫過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=4﹣x與反比例函數(shù)y=(m>0,x>0)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為1,與x軸,y軸分別相交于C,D兩點(diǎn).
(1)求另一個(gè)交點(diǎn)B的坐標(biāo);
(2)利用函數(shù)圖象求關(guān)于x的不等式4﹣x<的解集;
(3)求三角形AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com