【題目】某工地因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3,現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:
租金(單位:元/臺(tái)時(shí)) | 挖掘土石方量(單位:m3/臺(tái)時(shí)) | |
甲型機(jī) | 100 | 60 |
乙型機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有幾種不同的租用方案.
【答案】(1)甲、乙兩種型號(hào)的挖掘機(jī)各需5臺(tái)、3臺(tái);(2)有一種租車方案,即租用1輛甲型挖掘機(jī)和6輛乙型挖掘機(jī)
【解析】
(1)設(shè)甲、乙兩種型號(hào)的挖掘機(jī)各需x臺(tái)、y臺(tái),根據(jù)題意建立二元一次方程組即可求解;
(2)設(shè)租用m輛甲型挖掘機(jī),n輛乙型挖掘機(jī),根據(jù)題意列出二元一次方程,求出其正整數(shù)解,然后分別計(jì)算支付租金,選擇符合要求的租金方案.
(1)設(shè)甲、乙兩種型號(hào)的挖掘機(jī)各需x臺(tái)、y臺(tái).
依題意得: ,
解得: .
答:甲、乙兩種型號(hào)的挖掘機(jī)各需5臺(tái)、3臺(tái);
(2)設(shè)租用m輛甲型挖掘機(jī),n輛乙型挖掘機(jī).
依題意得:60m+80n=540,化簡(jiǎn)得:3m+4n=27.
∴m=9﹣ n
取正整數(shù)解有: 或 .
當(dāng)m=5,n=3時(shí),支付租金:100×5+120×3=860元>850元,超出限額;
當(dāng)m=1,n=6時(shí),支付租金:100×1+120×6=820元<850元,符合要求.
答:有一種租車方案,即租用1輛甲型挖掘機(jī)和6輛乙型挖掘機(jī).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲有存款600元,乙有存款2000元,從本月開始,他們進(jìn)行零存整取儲(chǔ)蓄,甲每月存款500元,乙每月存款200元.
(1)列出甲、乙的存款額y1、y2(元)與存款月數(shù)x(月)之間的函數(shù)關(guān)系式,畫出函數(shù)圖象.
(2)請(qǐng)問到第幾個(gè)月,甲的存款額超過乙的存款額?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)和是反比例函數(shù)圖象上兩點(diǎn),若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點(diǎn)在直線AB上,如圖2所示,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請(qǐng)?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時(shí),MN∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,P 是 BC 上任意一點(diǎn),PD⊥AB,PE⊥AC,連接 DE.記△ADE 的周長(zhǎng)為,四邊形 BDEC 的周長(zhǎng)為,則與的大小關(guān)系是( )
A. =B. >C. <D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AD,CB=CE.
(1)當(dāng)∠ABC=90°時(shí)(如圖①),∠EBD= °;
(2)當(dāng)∠ABC=n°(n≠90)時(shí)(如圖②),求∠EBD 的度數(shù)(用含 n 的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),且b=.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;
(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次向右跳動(dòng)至A1(-1,1),第二次向左跳動(dòng)至A2(2,1),第三次向右跳動(dòng)至A3(-2,2),第四次向左跳動(dòng)至A4(3,2)依照此規(guī)律跳動(dòng)下去,點(diǎn)A第2020次跳動(dòng)至A2020的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某移動(dòng)通信公司推出了如下兩種移動(dòng)電話計(jì)費(fèi)方式,
月使用費(fèi)/元 | 主叫限定時(shí)間/分鐘 | 主叫超時(shí)費(fèi)(元/分鐘) | |
方式一 | 30 | 600 | 0.20 |
方式二 | 50 | 600 | 0.25 |
說明:月使用費(fèi)固定收取,主叫不超過限定時(shí)間不再收費(fèi),超過部分加收超時(shí)費(fèi).例如,方式一每月固定交費(fèi)30元,當(dāng)主叫計(jì)時(shí)不超過300分鐘不再額外收費(fèi),超過300分鐘時(shí),超過部分每分鐘加收0.20元(不足1分鐘按1分鐘計(jì)算)
(1)請(qǐng)根據(jù)題意完成如表的填空;
月主叫時(shí)間500分鐘 | 月主叫時(shí)間800分鐘 | |
方式一收費(fèi)/元 |
| 130 |
方式二收費(fèi)/元 | 50 |
|
(2)設(shè)某月主叫時(shí)間為t(分鐘),方式一、方式二兩種計(jì)費(fèi)方式的費(fèi)用分別為y1(元),y2(元),分別寫出兩種計(jì)費(fèi)方式中主叫時(shí)間t(分鐘)與費(fèi)用為y1(元),y2(元)的函數(shù)關(guān)系式;
(3)請(qǐng)計(jì)算說明選擇哪種計(jì)費(fèi)方式更省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC為等邊三角形,點(diǎn)D,E為直線BC上兩動(dòng)點(diǎn),且BD=CE.點(diǎn)F,點(diǎn)E關(guān)于直線AC成軸對(duì)稱,連接AE,順次連接AD,DF,AF.
(1)如圖1,若點(diǎn)D、點(diǎn)E在邊BC上,試判斷∠BAD與∠FDC的大小關(guān)系,并說明理由;
(2)若點(diǎn)D、點(diǎn)E在邊BC所在的直線上如圖(2)所示的位置,(1)中的結(jié)論是否還成立,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com