如圖,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中點(diǎn).點(diǎn)P以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒3個(gè)單位長度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng).點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).
(1)當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),PQ∥CD.
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形.
分析:(1)由當(dāng)PD=CQ時(shí),四邊形CDPQ是平行四邊形,此時(shí)PQ∥CD,可得方程:6-t=3t,解此方程即可求得答案;
(2)分別從當(dāng)Q運(yùn)動(dòng)到E和B之間與當(dāng)Q運(yùn)動(dòng)到E和C之間去分析求解即可求得答案.
解答:解:根據(jù)題意得:AP=t,CQ=3t,
∵AD=6,BC=16,
∴PD=AD-AP=6-t;
(1)∵AD∥BC,
∴當(dāng)PD=CQ時(shí),四邊形CDPQ是平行四邊形,此時(shí)PQ∥CD,
∴6-t=3t,
解得:t=1.5;
∴當(dāng)運(yùn)動(dòng)時(shí)間t為1.5秒時(shí),PQ∥CD.

(2)∵E是BC的中點(diǎn),
∴BE=CE=
1
2
BC=8,
①當(dāng)Q運(yùn)動(dòng)到E和B之間,設(shè)運(yùn)動(dòng)時(shí)間為t,則得:
2t-8=6-t,
解得:t=
14
3
;
②當(dāng)Q運(yùn)動(dòng)到E和C之間,設(shè)運(yùn)動(dòng)時(shí)間為t,則得:
8-2t=6-t,
解得:t=2,
∴當(dāng)運(yùn)動(dòng)時(shí)間t為2或
14
3
秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形.
點(diǎn)評:此題考查了梯形的性質(zhì)以及平行四邊形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案