【題目】如圖,AB⊙O的直徑,點C⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE

1)求證:AC平分∠DAB

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BCBE,AC邊的三角形為直角三角形.

【答案】詳見解析.

【解析】試題分析:1)連接OC可證得OCAD,結(jié)合條件可證得∠DAC=CAO,可證得結(jié)論;
2)由條件可得∠BCP=CABACF=BCF,結(jié)合外角性質(zhì)可得∠CFP=PCF可證得結(jié)論;
3連接AE可知根據(jù)條件可得到BEAB的關(guān)系,以及的關(guān)系,再結(jié)合勾股定理的逆定理可得到結(jié)論.

試題解析:證明:(1)如圖1,連接OC,

DPO的切線,

OCDP,

又∵ADDP

OCAD,

∴∠DAC=ACO,

OA=OC,

∴∠ACO=CAO

∴∠DAC=CAO,

AC平分∠DAB

(2)PDO的切線,

∴∠BCP=CAB,

又∵CE平分∠ACB,

∴∠ACF=BCF,

∴∠CAF+ACF=BCF+PCB

即∠CFP=PCF,

PC=PF,即△PCB為等腰三角形;

(2)如圖2,連接AE

CE平分∠ACB,

∴∠ACE=BCE

AE=BE,

又∵AB為直徑,

∴在RtABC,

∴以BC,BE,AC邊的三角形為直角三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線ly=﹣x+2x軸于點A,交y軸于點B,直線l上的點P(mn)在第一象限內(nèi),設(shè)AOP的面積是S

1)寫出Sm之間的函數(shù)表達(dá)式,并寫出m的取值范圍.

2)當(dāng)S3時,求點P的坐標(biāo).

3)若直線OP平分AOB的面積,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,ECD延長線上的一點,BEAD交于點F,DECD.

(1)求證:△ABF∽△CEB;

(2)若△DEF的面積為2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有庫存1800套舊桌凳,修理后捐助貧困山區(qū)學(xué)校.現(xiàn)有甲,乙兩個木工組都想承攬這項業(yè)務(wù).經(jīng)協(xié)商后得知:甲木工組每天修理的桌凳套數(shù)是乙木工組每天修理桌凳套數(shù)的,甲木工組單獨修理這批桌凳的天數(shù)比乙木工組單獨修理這批桌凳的天數(shù)多10天,甲木工組每天的修理費用是600元,乙木工組每天的修理費用是800元.

1)求甲,乙兩木工組單獨修理這批桌凳的天數(shù);

2)現(xiàn)有三種修理方案供選擇:方案一,由甲木工組單獨修理這批桌凳;方案二,由乙木工組單獨修理這批桌凳;方案三,由甲,乙兩個木工組共同合作修理這批桌凳.請計算說明哪種方案學(xué)校付的修理費最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4 , S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )

A. ③④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)點P的坐標(biāo)為(x,y),當(dāng)x<0時,點P的變換點P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時,點P的變換點P′的坐標(biāo)為(﹣y,x).

(1)若點A(2,1)的變換點A′在反比例函數(shù)y=的圖象上,則k=   ;

(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應(yīng)的函數(shù)關(guān)系式為   ,BOB′的大小是   度.

(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.

(4)拋物線y=(x﹣2)2+nx軸交于點C,D(點C在點D的左側(cè)),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(x>0)(x>0)的圖象分別是.設(shè)點P上,PAy軸交于點A,PBx軸,交于點B,PAB的面積為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案