給出下列命題:①若m=n+1,則1﹣m2+2mn﹣n2=0;②對于函數(shù)y=kx+b(k≠0),若y隨x的增大而增大,則其圖象不能同時經(jīng)過第二、四象限;③若a、b(a≠b)為2、3、4、5這四個數(shù)中的任意兩個,則滿足2a﹣b>4的有序數(shù)對(a,b)共有5組.其中所有正確命題的序號是___________
①②③

試題分析:要找出正確命題,可運用相關(guān)基礎(chǔ)知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.
①若m=n+1,則1-m2+2mn-n2=(1+m-n)(1-m+n)=0,②對于函數(shù)y=kx+b(k≠0),若y隨x的增大而增大,則其圖象不能同時經(jīng)過第二、四象限,③若a、b(a≠b)為2、3、4、5這四個數(shù)中的任意兩個,則滿足2a-b>4的有序數(shù)組(a,b)共有5組,均正確,所以正確命題的序號是①②③.
點評:正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA、OB的長分別是關(guān)于x的方程的兩根,且。請解答下列問題:

(1)求直線AB的解析式;
(2)若P為AB上一點,且,求過點P的反比例函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于A、B兩點,

(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像回答:當x取何值時
(3)根據(jù)圖像回答:當x取何值時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若等腰三角形的周長是100cm,則能反映這個等腰三角形的腰長y(cm)與底邊長x(cm)之間的函數(shù)關(guān)系式的圖象是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正比例函數(shù)y=kx(k為常數(shù),且k≠0)的函數(shù)值y隨著x的增大而增減小,則k的值可以是       .(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知點A是第一象限內(nèi)橫坐標為的一個定點,AC⊥x軸于點M,交直線y=-x于點N.若點P是線段ON上的一個動點,∠APB=30°,BA⊥PA,則點P在線段ON上運動時,A點不變,B點隨之運動.求當點P從點O運動到點N時,點B運動的路徑長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一次函數(shù),若y隨x的增大而增大,則的取值范圍是        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是我國古代計時器“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺底的小孔漏出.壺壁內(nèi)畫有刻度,人們根據(jù)壺中水面的位置計時,用x表示時間,y表示壺底到水面的高度,則y與x的函數(shù)關(guān)系式的圖象是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地為了鼓勵居民節(jié)約用水,決定實行兩級收費制,即每月用水量不超過14噸(含14噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過14噸時,超過部分每噸按市場調(diào)節(jié)價收費.小英家1月份用水20噸,交水費29元;2月份用水18噸,交水費24元.
(1)求每噸水的政府補貼優(yōu)惠價和市場調(diào)節(jié)價分別是多少?
(2)設(shè)每月用水量為噸,應(yīng)交水費為y元,寫出y與之間的函數(shù)關(guān)系式;
(3)小英家3月份用水24噸,她家應(yīng)交水費多少元?

查看答案和解析>>

同步練習(xí)冊答案