【題目】為了貫徹落實(shí)市委市府提出的“精準(zhǔn)扶貧”精神.某校特制定了一系列關(guān)于幫扶A、B兩貧困村的計(jì)劃.現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如下表:

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.

(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

【答案】(1)大貨車用8輛,小貨車用7輛;(2)y=100x+9400.(0≤x≤10,且x為整數(shù));(3)使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元.

【解析】

試題分析:(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運(yùn)輸152箱魚苗,列方程組求解;

(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8﹣x)輛,前往A村的小貨車為(10﹣x)輛,則前往B村的小貨車為[7﹣(10﹣x)]輛,根據(jù)題意,求出y與x的函數(shù)關(guān)系式;

(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運(yùn)費(fèi)最少的貨車調(diào)配方案.

試題解析:(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:,解得:大貨車用8輛,小貨車用7輛;

(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(0≤x≤10,且x為整數(shù));

(3)由題意得:12x+8(10﹣x)≥100,解得:x≥5,又0≤x≤10,5≤x≤10且為整數(shù),y=100x+9400,k=100>0,y隨x的增大而增大,當(dāng)x=5時(shí),y最小,最小值為y=100×5+9400=9900.

答:使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列添括號中,錯(cuò)誤的是( )

A. -x+5=-(x+5) B. -7m-2n=-(7m+2n)

C. a2-3=+(a2-3) D. 2x-y=-(y-2x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車沿著一條南北方向的公路來回行駛.某一天早晨從A地出發(fā),晚上到達(dá)B地.約定向北為 正,向南為負(fù),當(dāng)天記錄如下:(單位:千米)-18.3,-9.5,+7.1,-14,-6.2,+13,-6.8, -8.5
(1)問B地在A地何處,相距多少千米?
(2)若汽車行駛每千米耗油0.2升,那么這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王師傅手中拿著一根長12cm的木條,則該木條不能與下列所給木條組成直角三角形的是(  )

A. 5cm13cm B. 9cm15cm C. 16cm20cm D. 9cm13cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明三角形的三個(gè)內(nèi)角中,至少有一個(gè)大于或等于60°時(shí),應(yīng)先假設(shè)_____________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)有理數(shù)的和為5,其中一個(gè)加數(shù)是–7,那么另一個(gè)加數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我州某養(yǎng)殖場計(jì)劃購買甲、乙兩種魚苗600條,甲種魚苗每條16元,乙種魚苗每條20元,相關(guān)資料表明:甲、乙兩種魚苗的成活率為80%,90%

(1)若購買這兩種魚苗共用去11000元,則甲、乙兩種魚苗各購買多少條?

(2)若要使這批魚苗的總成活率不低于85%,則乙種魚苗至少購買多少條?

(3)在(2)的條件下,應(yīng)如何選購魚苗,使購買魚苗的總費(fèi)用最低?最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了獎勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購買1臺平板電腦比購買3臺學(xué)習(xí)機(jī)多600元,購買2臺平板電腦和3臺學(xué)習(xí)機(jī)共需8400元.

(1)求購買1臺平板電腦和1臺學(xué)習(xí)機(jī)各需多少元?

(2)學(xué)校根據(jù)實(shí)際情況,決定購買平板電腦和學(xué)習(xí)機(jī)共100臺,要求購買的總費(fèi)用不超過168000元,且購買學(xué)習(xí)機(jī)的臺數(shù)不超過購買平板電腦臺數(shù)的1.7倍.請問有哪幾種購買方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正多邊形的一個(gè)外角是72°,則這個(gè)多邊形的內(nèi)角和的度數(shù)是

查看答案和解析>>

同步練習(xí)冊答案