【題目】如圖,長(zhǎng)方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上任一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)CE的長(zhǎng)為_____時(shí),△CEB′恰好為直角三角形.
【答案】1或
【解析】
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,先利用勾股定理計(jì)算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=3,可計(jì)算出CB′=2,設(shè)BE=x,則EB′=x,CE=4﹣x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x,可得CE的長(zhǎng);
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形,可得BE的長(zhǎng),即可求CE的長(zhǎng).
解:當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=3,BC=4,
∴AC= =5,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5﹣3=2,
設(shè)BE=x,則EB′=x,CE=4﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4﹣x)2,解得x=,
∴BE=,CE=4﹣=
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.
此時(shí)ABEB′為正方形,
∴BE=AB=3,
∴CE=BC﹣BE=4﹣3=1
綜上所述:CE=1或
故答案為:1或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
如圖1,將一個(gè)等腰直角三角尺的頂點(diǎn)放置在直線上,,,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn).
觀察發(fā)現(xiàn):
(1)如圖1.當(dāng),兩點(diǎn)均在直線的上方時(shí),
①猜測(cè)線段,與的數(shù)量關(guān)系,并說(shuō)明理由;
②直接寫出線段,與的數(shù)量關(guān)系;
操作證明:
(2)將等腰直角三角尺繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段,與又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并寫出證明過(guò)程;
拓廣探索:
(3)將等腰直角三用尺繞著點(diǎn)繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),與交于點(diǎn),若,,請(qǐng)直接寫出的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開(kāi)始,繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),與射線BC重合時(shí)就停止旋轉(zhuǎn),射線BD與線段AC相交于點(diǎn)D,點(diǎn)M是線段BD的中點(diǎn).
(1)求線段BC的長(zhǎng);
(2)①當(dāng)點(diǎn)D與點(diǎn)A、點(diǎn)C不重合時(shí),過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,連接ME,MF,在射線BD旋轉(zhuǎn)的過(guò)程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請(qǐng)說(shuō)明理由.
②在①的條件下,連接EF,直接寫出△EFM面積的最小值______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的頂點(diǎn)在軸上,反比例函數(shù)()的圖像經(jīng)過(guò)頂點(diǎn),和邊的中點(diǎn).若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且AB=AC.延長(zhǎng)CD至點(diǎn)E,使CE=BD,連接AE.
(1)求證:AD平分∠BDE;
(2)若AB//CD,求證:AE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】貨車和轎車分別從甲、乙兩地同時(shí)出發(fā),沿同一公路相向而行.轎車出發(fā)2.4h后休息,直至與貨車相遇后,以原速度繼續(xù)行駛.設(shè)貨車出發(fā)xh后,貨車、轎車分別到達(dá)離甲地y1km和y2km的地方,圖中的線段OA、折線BCDE分別表示y1、y2與x之間的函數(shù)關(guān)系.
(1)求點(diǎn)D的坐標(biāo),并解釋點(diǎn)D的實(shí)際意義;
(2)求線段DE所在直線的函數(shù)表達(dá)式;
(3)當(dāng)貨車出發(fā)________h時(shí),兩車相距200km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),過(guò)點(diǎn)作直線的垂線,交軸于點(diǎn),過(guò)點(diǎn)作軸的垂線交直線于點(diǎn)…,這樣依次下去,得到,…,其面積分別記為,…,則為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC⊥BD,⊙O的半徑為6cm,AD=4cm,OE⊥BC,垂足為E.則弦BC的長(zhǎng)為____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com