【題目】某中學數(shù)學興趣小組為了解本校學生對電視節(jié)目的喜愛情況,隨機調查了部分學生最喜愛哪一類節(jié)目 (被調查的學生只選一類并且沒有不選擇的),并將調查結果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調查的學生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學有2000名學生,請估計該校喜愛電視劇節(jié)目的人數(shù).
【答案】
(1)
解: 69÷23%=300(人)
∴本次共調查300人;
(2)
解:∵喜歡娛樂節(jié)目的人數(shù)占總人數(shù)的20%,
∴20%×300=60(人),補全如圖;
∵360°×12%=43.2°,
∴新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù)為43.2°;
(3)
解:2000×23%=460(人),
∴估計該校有460人喜愛電視劇節(jié)目.
【解析】(1)根據(jù)喜愛電視劇的人數(shù)是69人,占總人數(shù)的23%,即可求得總人數(shù);
(2)根據(jù)總人數(shù)和喜歡娛樂節(jié)目的百分數(shù)可求的其人數(shù),補全即可;利用360°乘以對應的百分比即可求得圓心角的度數(shù);
(3)利用總人數(shù)乘以對應的百分比即可求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.
(1)請直接寫出線段BE與線段CD的關系:;
(2)如圖2,將圖1中的△ABC繞點A順時針旋轉角α(0<α<360°),
①(1)中的結論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當AC=時,探究在△ABC旋轉的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:綏中白梨,B:虹螺峴干豆腐,C:綏中六股河鴨蛋,D:興城紅崖子花生”四種特產(chǎn),在全市范圍內隨機抽取了部分市民進行問卷調查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調查結果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.
(1)請補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(2)若全市有280萬市民,估計全市最喜歡“虹螺峴干豆腐”的市民約有多少萬人?
(3)在一個不透明的口袋中有四個分別寫上四種特產(chǎn)標記A、B、C、D的小球(除標記外完全相同),隨機摸出一個小球然后放回,混合搖勻后,再隨機摸出一個小球,則兩次都摸到“A”的概率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過原點O的直線AB與反比例函數(shù)(k>0)的圖象交于A、B兩點,點B坐標為(﹣2,m),過點A作AC⊥y軸于點C,OA的垂直平分線DE交OC于點D,交AB于點E.若△ACD的周長為5,則k的值為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數(shù)量關系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?
(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.
(1)求證:EF與⊙O相切;
(2)若AB=6,AD=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,反比例函數(shù)y= 的圖象與正比例函數(shù)y=kx(k≠0)的圖象相交于橫坐標為2的點A,平移直線OA,使它經(jīng)過點B(3,0),與y軸交于點C.
(1)求平移后直線的表達式;
(2)求∠OBC的余切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com